多层感知机 (MLP)、神经网络、深度学习、激活函数、反向传播、梯度下降、机器学习
1. 背景介绍
深度学习作为机器学习领域的重要分支,近年来取得了令人瞩目的成就。其中,多层感知机 (Multilayer Perceptron,MLP) 作为深度学习的基础模型,在图像识别、自然语言处理、语音识别等领域发挥着重要作用。本文将深入探讨 MLP 的原理、算法、代码实现以及实际应用场景,帮助读者理解和应用这一重要的机器学习模型。
2. 核心概念与联系
MLP 是一种前馈神经网络,由多个相互连接的层组成,每一层包含多个神经元。这些神经元通过权重进行连接,并将输入信号传递到下一层。MLP 的结构可以简单概括为:
- 输入层:接收原始数据,每个神经元对应一个输入特征。
- 隐藏层:多个隐藏层可以用来提取数据的特征表示,每个隐藏层包含多个神经元。
- 输出层:输出最终的预测结果,每个神经元对应一个输出类别或值。
MLP 的工作原理是通过调整神经元之间的权重,使得网络能够学习输入数据与输出结果之间的映射关系。