自动驾驶, 端到端学习, 闭环训练, 闭环验证, 深度学习, 强化学习, 仿真环境
1. 背景介绍
自动驾驶技术作为未来交通运输的重要发展方向,近年来取得了显著进展。其中,端到端自动驾驶方法凭借其简洁高效的架构和强大的学习能力,成为研究热点。传统的自动驾驶系统通常采用分层架构,将感知、决策和控制等任务分别处理,需要大量的标注数据和复杂的规则设计。而端到端自动驾驶方法将整个驾驶过程视为一个整体,通过深度学习网络直接从传感器数据中学习驾驶策略,简化了系统设计,提高了学习效率。
然而,端到端自动驾驶方法也面临着一些挑战。首先,真实世界驾驶环境复杂多变,包含各种不可预测的因素,难以完全模拟。其次,训练自动驾驶模型需要大量的真实驾驶数据,而收集和标注这些数据成本高昂且耗时。因此,如何有效地训练和验证端到端自动驾驶模型,使其能够在真实世界环境中安全可靠地行驶,是当前研究的重点。
闭环训练和闭环验证是解决上述问题的有效手段。闭环训练是指在仿真环境中训练模型,并利用模型的输出控制仿真环境,从而形成一个闭环系统。闭环验证是指在真实世界环境中验证模型的性能,并利用模型的输出控制车辆行驶,从而形成另一个闭环系统。