AI 大模型在电商搜索推荐中的用户行为分析:理解用户需求与购买意图
关键词:电商搜索推荐, 用户行为分析, 购买意图, 自然语言处理, 深度学习, 大模型, 语义理解, 跨模态融合
1. 背景介绍
1.1 问题由来
在当今数字化商业时代,电商平台通过精确的搜索推荐系统,帮助用户快速找到所需商品,提升用户体验,同时为商家带来更高的转化率和销售额。但传统推荐系统往往基于静态的统计特征,缺乏对用户行为深层次的理解,导致推荐效果不够精准。随着人工智能技术的不断发展,利用大模型对用户行为进行深入分析,已成为电商领域提升推荐效果的重要方向。
具体而言,利用大模型分析用户搜索查询、浏览历史、点击行为等数据,可以挖掘出用户的兴趣偏好、需求意图等隐含信息。这些信息不仅可以用于推荐,还可以用于内容生成、广告投放、价格优化等多个电商应用场景。
1.2 问题核心关键点
大模型在电商搜索推荐中的应用,核心在于理解用户的搜索行为、浏览历史、点击记录等,从而推测用户的购买意图,提供个性化的推荐服务。与传统推荐方法相比,大模型的方法具有以下优势:
- 深度语义