Llama 3无限使用!喂饭级本地部署教程,零成本爽翻天_llama3怎么喂数据

近日,真正的“OpenAI”——Meta公司,对“Close AI”进行了有力回应,推出了其开源大模型系列的最新力作——Llama 3。自Llama 1起,这个系列便以其卓越性能在开源大模型领域独占鳌头。在相同规模的参数量下,它无疑是最出色的选手之一。而Llama 3更是青出于蓝,不仅在技术层面实现了对Llama 2的重大突破,还在各种评估测试中展现出令人瞩目的表现。这标志着AI技术又迈出了坚实的一步。

图片

img目前,推出了两个版本,分别是8B和70B。

在与同等级别的Gemma和Mistral开源模型较量中,8B版本展现出了显著的优势。

至于70B版本,它在与Gemini Pro 1.5及Claude的Sonnet模型的比拼中,表现得旗鼓相当,难分伯仲。

值得注意的是,70B版本在实际应用中的效能测评已清晰地超出了GPT 3.5的水平。

图片如今,有机会在个人计算机上本地安装并运行一个相当于GPT-3.5级别的人工智能模型,这标志着技术的一大进步。

此次升级不仅显著提升了模型的运行效率,还引入了一项创新特性——文本生成图像功能。

用户现在可以访问Meta AI的官方网站,尝试这个功能的测试版本,亲身体验这一技术创新带来的惊喜。

图片

图片

在自己的电脑上部署GPT4All

图片

轻松运行大型语言模型 由于Meta AI的限制,目前非美国用户很难在线体验特定服务。

不过不用担心,本文将指导你如何在个人电脑上部署并运行类似服务。

我们将使用GPT4All,一个强大的开源工具,让你无需复杂设置就能在普通设备上训练和运行大规模语言模型。

什么是GPT4All?

GPT4All是一个创新的软件生态系统,它的魅力在于,只需占用3GB至8GB的磁盘空间,你就能在笔记本或台式机上运行拥有数亿参数的大型语言模型,这在过去是难以想象的。

安装GPT4All客户端

要开始这个安装,首先访问GPT4All的官方网站。

网站提供了适用于不同操作系统的客户端安装包。

只需选择与你的电脑系统匹配的版本,下载并进行安装。

简单几步,你就能拥有自己的本地语言模型运行环境。

图片**
**

图片

首先,访问官方网站:https://gpt4all.io

图片

完成资源的下载。随后,我们将逐步进行安装流程,确保每个步骤都清晰无误:

图片

该应用程序的内存占用约为200MB,算是较为轻量级的,因此用户可依据自身需求灵活选择将其安装在C盘或任何其他磁盘。不过,推荐避免将安装位置设在含有中文名称的文件夹路径下,以确保软件的正常运行。图片按照指示,不断地选择“下一步”,直到整个安装过程顺利完成

图片在初次安装并运行程序时,用户将会遇到一个特定的界面提示:

图片该规定旨在通过收集您的对话记录,以便对GPT4All系统进行优化升级。如您重视个人隐私,完全可以毫不犹豫地统一选择“不同意”。如此一来,网页将随即显示三个核心模型的下载选项界面。

图片只需轻点“Download”按钮,即可启动下载过程。我们选择的是3系列的8B模型版本,对于70B的庞大模型,硬件要求相对苛刻一些。如果你的设备性能强劲,不妨尝试下载体验。不过,在此提醒,尽管8B版的参数规模不算过于庞大,但为了获得更佳的运行效果,建议至少拥有8GB显存的电脑环境。完成下载后,你会在主界面顶部看到3模型的选择选项

图片一旦GPT4All的大规模模型完成加载,我们便可以着手启动并充分利用其功能了:

图片图片在新版布局中,您可以选择在右上角的设置选项中预先进行配置,这样一来,系统将会适时提供贴心的提示信息。这个功能旨在提升用户体验,确保您在操作过程中得到及时的指引,而不会错过任何重要步骤。请注意,个性化设置应当兼顾易用性和实用性,以满足不同用户的需求。在调整设置时,保留原有的直观性和便捷性是非常关键的,同时也要保证提示信息的清晰度,使之既符合常规操作习惯,又不失为一种独特的交互体验。

图片即使没有配备GPU,您也可以通过调整应用程序的设置,选择利用CPU来进行运算。请在相关选项中选择使用中央处理器(CPU),这样系统将自动适应并以CPU运行程序。虽然GPU通常能提供更快的计算速度,特别是在处理图形密集型任务时,但CPU仍然是一个可靠的替代方案,尽管其效率可能相对较低。确保在切换设置后,程序仍能稳定运行,不会影响整体性能。

图片然而,这样的操作可能会导致速度有所下降:

图片

图片在当前的本地安装版本中,Llama 3 的一个显著局限是缺少文生图能力。然而,启用这一特性可能对计算机硬件配置提出更高的要求,这使得直接采用SD方案显得更为经济实惠。若你有兴趣尝试更多高级模型,只需在对话窗口的左侧面板点击“Download”,你就能访问模型下载页面,轻松探索各种强大的模型选择。

图片一系列大型语言模型可供下载,其文件尺寸从几十兆字节到8GB不等,相应的参数数量在4千万至惊人的130亿之间。值得注意的是,模型的参数越多,对计算机硬件配置的需求也随之增加。例如,一个拥有130亿参数的模型可能需要至少16GB的显存支持,这无疑设置了一道技术门槛,可能会让许多用户望而却步。然而,对于那些寻求妥协方案的用户,70亿参数量的模型是个不错的选择,它仅需4GB至8GB的显存,性价比显得尤为出色。每个模型都配有详细的介绍,用户可以根据自身需求选择最适合的模型进行下载。

图片官方网站提供了更为详尽的模型测评,对每个模型都有深入的介绍和分析,可以满足你对更多细节的探索需求。

图片高性能的大模型通常与更高的分数直接相关,分数越出色,模型的效能表现越显著。为了便于用户获取这些优秀模型,官方提供了一个如同客户端般便捷的下载选项,只需轻轻一点,即可轻松完成下载过程。

图片考虑到一些模型的体积可观,推荐将这些大型模型的存储位置设置在C盘以外的硬盘分区。这么做能有效防止在运行模型时过度占用C盘空间,避免出现系统运行缓慢或崩溃的情况。

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

  • 19
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值