个人主页:strive-debug
快速排序非递归版本
非递归版本的快速排序是为了解决在空间不够的情况下,利用栈来模拟递归的过程。
递归版本的快速排序是空间换时间,好实现。
实现思路:
1. 创建一个栈,将数组的右边界下标和左边界下标依次入栈。
2. 循环弹出数组的左右边界下标,并对该区间进行单趟排序,确定关键值的下标,分为左右两个区间。
3. 若左区间元素个数大于一个,将左区间右边界下标和左边界下标依次入栈,右区间同理。
4. 重复操作步骤2和3,直到栈为空。
代码演示:
void QuickSortNonR(int* arr, int left, int right)
{
ST st;
STInit(&st);
//先右后左,新进后出
STPush(&st, right);
STPush(&st, left);
while (!STEmpty(&st))
{
int begin = STTop(&st);
STPop(&st);
int end = STTop(&st);
STPop(&st);
int prev = begin;
int cur = begin + 1;
int key = begin;
while (cur <= end)
{//前后指针排序,找基本点
if (arr[cur] < arr[key] && ++prev != cur)
{
Swap(&arr[prev], &arr[cur]);
}
cur++;
}
Swap(&arr[prev], &arr[key]);
key = prev;
//找到基本点
//左区间[begin,key-1]
//右区间[key+1,end]
if (key + 1 < end)
{
STPush(&st,end);
STPush(&st, key + 1);
}
if (begin < key - 1)
{
STPush(&st, key - 1);
STPush(&st, begin);
}
}
STDestroy(&st);
}
```
归并排序
算法思想:
归并排序是基于归并操作的一种有效的排序算法,采用分治法(Divide and Conquer)的思想。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
核心步骤:
void _MergeSort(int* arr, int left, int right, int* tmp)
{
if (left >= right)
{
return;
}
int mid = (right + left) / 2;
//[left,mid] [mid+1,right]
_MergeSort(arr, left, mid, tmp);
_MergeSort(arr, mid + 1, right, tmp);
//合并
//[left,mid] [mid+1,right]
int begin1 = left, end1 = mid;
int begin2 = mid + 1, end2 = right;
int index = begin1;
//对数据进行比较
while (begin1 <= end1 && begin2 <= end2)
{
if (arr[begin1] < arr[begin2])
{
tmp[index++] = arr[begin1++];
}
else
{
tmp[index++] = arr[begin2++];
}
}
//跳出循环的结果:
//要么begin1越界,要么begin2越界
//有一个被排完了,还有一个没排完
//那么就要考虑有一个越界,那另一个肯定就没有越界
//begin2越界
while (begin1 <= end1)
{
tmp[index++] = arr[begin1++];
}
//begin1越界
while (begin2 <= end2)
{
tmp[index++] = arr[begin2++];
}
//[left,mid],[mid+1,right]
//把tmp中的数据拷贝回arr中
for (int i = left; i <= right; i++)
{
arr[i] = tmp[i];
}
}
void MergeSort(int* arr, int n)
{//创建n个下标的数组
int* tmp = (int*)malloc(sizeof(int) * n);
_MergeSort(arr, 0, n - 1, tmp);
free(tmp);
}
```
时间复杂度: O(nlogn)
空间复杂度: O(n)
接下来为大家介绍不用对比也能排序的版本就是计数排序:
计数排序
操作步骤:
1. 统计相同元素出现次数。
2. 根据统计的结果将序列回收到原来的序列中。
代码实现:
void CountSort(int* arr, int n)
{
//找最大值和最小值
int min = arr[0], max = arr[0];
for (int i = 1; i < n; i++)
{
if (arr[i] > max)
max = arr[i];
if (arr[i] < min)
min = arr[i];
}
//创建以最大数为下标的数组
//不要忘记还有0下标
int range = max - min + 1;
int* count = (int*)malloc(sizeof(int) * range);
if (count == NULL)
{
perror("malloc fail");
return;
}
//给数组count设置,将数组中数据设置为0
memset(count, 0, sizeof(int) * range);
// 统计次数
for (int i = 0; i < n; i++)
{//arr对应下标的数和最小值相减,然后让count对应数的下标的数++
count[arr[i] - min]++;
}
// 排序
int j = 0;
for (int i = 0; i < range; i++)
{//这里取数是对数组count里对应的数进行操作--
//上来看见“i=0然后--”不要慌
while (count[i]--)
{
arr[j++] = i + min;
}
}
}
```
特性:
- 计数排序在数据范围集中时,效率很高,但适用范围及场景有限。
- 时间复杂度:O(N + range)
- 空间复杂度:O(range)
- 稳定性: 稳定