特征交叉系列:PNN向量积模型理论和实践,FM和DNN的串联

PNN介绍和结构简述

PNN(Product-based Neural Networks)是2016年提出的一种基于向量乘积和多层感知机的推荐排序算法,他将FMDNN串行结合,即先利用FM的向量乘积形式来表征二阶交叉信息,再输入给DNN这种全连接形式,使得二阶信息叠加非线性能力,期望这种组合能够学到更高阶的交叉信息。
PNN的网络结构如下

PNN网络结构

数据从最下层的input输入到最上层的CTR输出,其中Embedding Layer和Product Layer是FM,L1和L2 Fully Connected是DNN,Product Layer层对FM的内积做了拓展,不仅支持向量内积,还支持向量外积内外积融合一共三种向量积表征方式。
原始onehot输入经过Embedding Layer转化为隐向量,在Product Layer中计算出一阶特征z和交叉特征p,其中z是所有隐向量和常数1相乘,本质上就是将上一个嵌入层的embedding照搬过来,将所有特征的embedding进行拼接组合成z部分。
p部分是所有特征的两两向量乘积运算,只计算半三角因此一共有**field_num×(field_num-1)**个输出结果,其中field_num是特征域数量,根据乘积的方式不同有三种策略

  • 内积 IPNN:一对向量进行内积点乘输出一个标量,因此图中p部分的一个圈代表一个值
  • 外积 OPPN:A向量转置和B向量进行矩阵相乘,若隐向量的维度为M,则输出一个M×M的矩阵,为了能使矩阵做信息浓缩输入到下一层,PNN引入了同样是是M×M形状的可学习的权重矩阵W,对应位置的两矩阵做**哈达马积(element-wise乘法)**再求和输出一个标量,因此外积的策略下p部分的一个圈也代表一个值
  • 内外积融合 PNN*:将内积的输出向量,和外积的输出向量进行拼接,作为p部分的最终输出,此时输出维度为原来的两倍为field_num×(field_num-1)×2

p部分的结果和z部分再拼接形成了最终DNN的输入,经过两层隐藏层sigmoid输入二分类交叉熵完成模型损失迭代。


PNN和FM,FNN,DeepFM的联系

PNN和FM
若删除PNN的两层DNN,采用内积Product,所有p的标量相加,则PNN退化为FM,本质上PNN是将FM的内积结果不直接相加输出,而是作为中间结果继续灌入多层感知机做训练。
PNN和FNN
FNN也是将FM的结果作为DNN的输入,而FNN是两阶段模型,先训练一个FM得到每个特征的嵌入向量,再将所有嵌入向量拼接输入到全连接层,如果删除PNN的Product Layer,PNN退化为FNN。
PNN和DeepFM
两者都是将FM融入和深度学习的算法策略,PNN是FM和MLP的串行,MLP依赖于FM的输出,而DeepFM是FM和MLP的并行,FM和MLP共享底层联合训练。


PNN的三种形式在PyTorch下的实践

本次实践的数据集和上一篇[特征交叉系列:完全理解FM因子分解机原理和代码实战]一致,采用用户的购买记录流水作为训练数据,用户侧特征是年龄,性别,会员年限等离散特征,商品侧特征采用商品的二级类目,产地,品牌三个离散特征,随机构造负样本,一共有10个特征域,全部是离散特征,对于枚举值过多的特征采用hash分箱,得到一共72个特征。
通过PyTorch构造PNN网络结构如下

class Embedding(nn.Module):
    def __init__(self, feat_num, emb_size):
        super(Embedding, self).__init__()
        self.emb = nn.Embedding(feat_num, emb_size)
        nn.init.xavier_normal_(self.emb.weight.data)

    def forward(self, x):
        # [None, field_num] => [None, field_num, emb_size]
        return self.emb(x)


class InnerProductLayer(nn.Module):
    def __init__(self, field_num):
        super(InnerProductLayer, self).__init__()
        self.field_num = field_num

    def forward(self, x):
        # [None, field_num, emb_size]
        p_index = []
        q_index = []
        for i in range(self.field_num - 1):
            for j in range(i + 1, self.field_num):
                p_index.append(i)
                q_index.append(j)
        # [None, pair_size, emb_size] * [None, pair_size, emb_size] => [None, pair_size, emb_size] => [None, pair_size]
        return torch.sum(x[:, p_index] * x[:, q_index], dim=2)
    
    
class OuterProductLayer(nn.Module):
    def __init__(self, field_num, emb_size):
        super(OuterProductLayer, self).__init__()
        self.field_num = field_num
        self.pair_size = int(field_num * (field_num - 1) / 2)
        self.w = nn.Parameter(torch.zeros(self.pair_size, emb_size, emb_size))
        nn.init.xavier_normal_(self.w.data)

    def forward(self, x):
        # TODO 更优的写法
        """
        kernel = self.w.permute(2, 0, 1)
        kp = torch.sum(p.unsqueeze(1) * kernel, dim=-1).permute(0, 2, 1)
        return torch.sum(kp * q, -1)
        """
        # [None, field_num, emb_size]
        p_index = []
        q_index = []
        for i in range(self.field_num - 1):
            for j in range(i + 1, self.field_num):
                p_index.append(i)
                q_index.append(j)
        p = x[:, p_index]
        q = x[:, q_index]
        # [None, pair_size, emb_size, 1] * [None, pair_size, 1, emb_size] => [None, pair_size, emb_size, emb_size]
        pq = torch.unsqueeze(p, dim=-1) * torch.unsqueeze(q, dim=-2)
        return torch.sum(torch.sum(pq * self.w, dim=-1), dim=-1)


class InnerOuterProductLayer(nn.Module):
    def __init__(self, field_num, emb_size):
        super(InnerOuterProductLayer, self).__init__()
        self.inner = InnerProductLayer(field_num)
        self.outer = OuterProductLayer(field_num, emb_size)

    def forward(self, x):
        return torch.concat([self.inner(x), self.outer(x)], dim=1)


class PNN(nn.Module):
    def __init__(self, field_num, feat_num, emb_size, fc_dims=(64, 16), dropout=0.1, method="inner"):
        super(PNN, self).__init__()
        if method == 'inner':
            self.pn = InnerProductLayer(field_num)
        elif method == 'outer':
            self.pn = OuterProductLayer(field_num, emb_size)
        elif method == 'all':
            self.pn = InnerOuterProductLayer(field_num, emb_size)
        else:
            raise ValueError('unknown product type: ' + method)
        self.field_num = field_num
        self.emb_size = emb_size
        self.embedding = Embedding(feat_num, emb_size)
        cross_out_dim = int(field_num * (field_num - 1) / 2)
        if method == 'all':
            cross_out_dim *= 2
        fc_input_dim = cross_out_dim + field_num * emb_size
        fc_layers = []
        for fc_dim in fc_dims:
            fc_layers.append(torch.nn.Linear(fc_input_dim, fc_dim))
            fc_layers.append(torch.nn.BatchNorm1d(fc_dim))
            fc_layers.append(torch.nn.ReLU())
            fc_layers.append(torch.nn.Dropout(p=dropout))
            fc_input_dim = fc_dim
        fc_layers.append(nn.Linear(fc_input_dim, 1))
        self.mlp = nn.Sequential(*fc_layers)

    def forward(self, x):
        # [None, field_num] => [None, field_num, emb_size]
        emb = self.embedding(x)
        # [None, field_num * emb_size]
        linear = emb.reshape(-1, self.field_num * self.emb_size)
        # [None, field_num * (field_num - 1) / 2]
        cross = self.pn(emb)
        fc_input = torch.concat([linear, cross], dim=1)
        out = torch.sigmoid(self.mlp(fc_input))
        return out.squeeze(dim=1)

在PNN模型主模块中定义了inner,outer,all三种方式分别对应内积,外积,内外积融合,其中内外积融合分别调用内积和外积的子模块,将结果进行拼接作为输出结果。
本例全部是离散分箱变量,所有有值的特征都是1,因此只要输入有值位置的索引即可,一条输入例如

>>> train_data[0]
Out[120]: (tensor([ 2, 10, 14, 18, 34, 39, 47, 51, 58, 64]), tensor(0))

其中x的长度10代表10个特征域,每个域的值是特征的全局位置索引,从0到71,一共72个特征,索引的目的是在模型中通过nn.Embedding映射到对应的隐向量。
采用10次验证集AUC不上升作为早停依据,IPNN,OPNN,PNN*的验证集平均AUC如下,加入FM作为baseline做对比

FMIPNNOPNNPNN*
AUC0.62630.63220.63260.6342

从结果来看PNN模型利用并拓展了FM,AUC确实比FM有明显提升(+0.05),而三种不同的PNN向量积策略中,内外积融合的PNN*效果最好,外积效果略优于内积。

最后的最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

五、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

  • 8
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值