DNN模型

本文详细介绍了深度神经网络(DNN)的基本结构、计算模型、训练过程及反向传播算法。讨论了训练DNN时面临的挑战,如过拟合、非凸优化问题和梯度弥散,并提出了逐层贪婪训练方法作为解决方案。此外,还阐述了BP算法在网络参数求解中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Deep Neural Network(DNN)模型是基本的深度学习框架;

(一)神经元计算模型(感知机模型)


1.计算公式:

2.常见响应函数(非线性函数):

(1)logistic/sigmoid function:


(2)tanh function:

(3)step/binary function:

(4)rectifier function:

(5)analytic function:rectifier function的平滑近似:


(二)DNN模型


1.结构:输入层(1层)——隐层(可以有多层)——输出层(1层)

2.符号表示:


3.计算公式:


(三)训练DNN模型

1.代价函数:

### DNN 模型划分与分割的技术概述 #### 1. 卷积核分割方案 卷积核分割是一种针对深度神经网络(DNN)推理优化的方法,其核心在于通过对卷积层中的卷积核进行合理切割来实现更高效的计算分布。这种方法能够显著减少通信开销和计算负载,从而提升边缘设备上的推理效率[^1]。 #### 2. EENC协作推理架构下的任务划分 在计算与网络融合(CNC)环境中,提出了端-边-网络-云(EENC)协作推理架构以及一种启发式的集中式DNN任务卸载算法(CDTO)。该方法解决了多DNN推理任务的细粒度划分和调度问题,通过将复杂的DNN模型划分为适合不同计算节点处理的小模块,实现了整体系统的性能最优化[^2]。 #### 3. 基于点的3D语义分割技术 对于特定应用场景如3D点云数据处理,可以采用基于点的DNN模型划分方式。这些方法通常按照不同的范式设计,例如逐点MLP、点卷积、基于RNN或者基于图的方式。每种范式都提供了独特的视角去理解并分解原始的大规模DNN结构,以便适应具体的硬件条件或应用需求[^3]。 #### 4. 决策模型辅助的动态划分策略 利用预训练好的场景表示网络作为基础,构建了一个基于神经网络的决策模型来进行实时的任务分配判断。此模型会输出每个输入样本对应到各类子模型的概率值,进而指导实际操作过程中如何有效地拆解整个大模型成若干个小部分加以独立运算[^4]。 #### 5. 移动环境下的智能协作机制 当考虑移动终端同云端协同完成大型DNN推断作业时,则需特别注意开发智能化的计算分区框架。这类框架不仅要能准确预测哪些环节应该被上传至远程服务器执行,而且要保证这种选择不会影响最终结果的质量标准——即保持较高的预测准确性的同时尽可能缩短响应时间并节省能量消耗[^5]。 ```python def dnn_partition(model, device_capabilities): """ A function to demonstrate a simplified version of DNN partitioning logic. Args: model (dict): The structure of the deep neural network represented as layers with their properties. device_capabilities (list): List representing computational power available at each node. Returns: list: Partitioned segments assigned to different devices based on capabilities. """ partitions = [] current_segment = [] for layer in model['layers']: # Estimate resource requirement per layer req = estimate_resource(layer) if sum([estimate_resource(l) for l in current_segment]) + req > max(device_capabilities): # Assign segment when exceeding capability limit partitions.append(current_segment.copy()) current_segment.clear() current_segment.append(layer) if current_segment: partitions.append(current_segment) return assign_to_devices(partitions, device_capabilities) def estimate_resource(layer): """Estimate resources required by given layer.""" pass def assign_to_devices(segments, caps): """Assign segments optimally across devices according to capacities.""" pass ``` 上述代码片段展示了一个简化版的DNN模型自动切分逻辑示意图,它可以根据目标平台的能力水平自动生成合理的部署计划。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值