物流行业的AI大模型革命:革新与挑战并存的营销新纪元

前言

2024年,AI大模型应用元年,AIGC技术正在物流行业中迅速变革,重塑着原有的应用、流程和业务模式。
在这里插入图片描述

近期,中通、圆通、申通、韵达、中远海科、东航物流等物流企业的CTO与CIO们在上海举行了“华山论剑”闭门会议,共同探讨AI大模型在物流行业的应用及其挑战。

这些CTO们正处在不同的阶段,有的在AI大模型与小模型间取舍,有的正推进AI大模型商业化,有的已朝着垂直场景AI大模型做迭代创新。在会议上,他们就上云的权衡、AIGC创新场景的发掘,以及对AI大模型应用落地的担忧展开了深入讨论,好几位CTO的笔记都写满了几页纸。

面对AI大模型浪潮,CTO们需要规划好哪些应用应采用跟随模式,哪些应主导开发。在模型选择上,不少物流企业选择了国产AI大模型,认为除了基础AI大模型的选择之外,同样重要的还有基础测试库。

物流行业的AI大模型商业化探索也取得了显著进展,例如在客服、专业助手等场景中的应用。市场从业者们普遍关注成本问题,申通CTO赵柏敏和中通快递CTO杨文都认为,如果GPU计算资源、能耗等成本问题不解决,AI大模型在大部分领域都无法大规模应用。

物流行业呼唤更专业的行业大模型来解决AI大模型的“幻觉”问题,即在实际应用中可能出现的准确性不足。部分物流企业已经在阿里云上利用自有数据训练行业大模型,以提供更专业的辅助和解答。
AI大模型落地的最短路径是“AI @ Cloud”,即基于云计算实现AI大模型的应用场景落地。阿里云智能集团副总裁李强认为,上云最核心解决的不仅仅是成本的问题,而是企业保持持续创新、保持与时代同步、保持商业敏态的能力。
在这里插入图片描述

此外,贝联珠贯创始人&CEO毕玄分享了如何建设一个迎接AI应用爆发的企业级架构的经验,从分布式架构改造到云原生架构,阿里巴巴电商的技术架构演进为物流行业提供了宝贵的经验。
最后,娄恒认为,云原生和AI原生是数智企业的两大确定性技术方向,云原生能够支持企业快速在全球化开展业务,而AI原生有望全面重塑物流行业的业务流程。

最后

对于个人而言,学习大模型AI是一个提升竞争力的机会,尤其是对于最先掌握AI的人。互联网行业的工作者分享了他们在一线企业工作多年的经验和知识,帮助许多人学习和成长,并免费分享了一些重要的AI大模型资料,包括入门学习思维导图、学习书籍手册、视频教程等,以解答大家在人工智能学习中的困惑。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值