轻松搞定:用Python代码调用DeepSeek API的快速指南(详版),建议收藏起来慢慢学!!!

前 言

使用 Python 调用 DeepSeek API 是一个非常高效的方式,可以快速实现自然语言处理、代码生成等任务。

以下是详细的快速指南,帮助你轻松搞定这一过程。

准备工作

1. 获取DeepSeek API KEY

访问 DeepSeek 官方网站,注册账号并登录。

https://www.deepseek.com/

图片

图片

在用户中心或开发者页面中,点击左侧菜单【API Keys】,点击创建API key,并妥善保存。

图片

创建成功后,一定要记录此处的API key。因为deepseek的平台不会再次展示API Keys的值

一定要记录

一定要记录

一定要记录

2.安装 Python 环境

访问python官方网站下载。

https://www.python.org/

这里不再赘述,小栈使用的版本是python3.9.16

3.安装 PyCharm

访问PyCharm官方网站下载。

https://www.jetbrains.com.cn/pycharm/download/?section=windows

下载专业版本

pycharm-professional-2024.3.2.exe

这里也不再赘述,小栈使用的版本是PyCharm 2024.3

基本使用

1.安装三方库

安装三方库 openai

pip3 install openai

2.引用三方库

引用三方库 openai

from openai import OpenAI

3.简单使用

将注册deepseek创建的api key输入,就可以直接使用了

比如想了解"如何学习Python"


from openai import OpenAI

client = OpenAI(api_key="deepseek创建的api key", base_url="https://api.deepseek.com")

role_user="如何学习Python"

response = client.chat.completions.create(
    model="deepseek-chat",
    messages=[
        {"role": "system", "content": "You are a helpful assistant"},
        {"role": "user", "content": role_user},
    ],
    stream=False
)

print(response.choices[0].message.content)

结果:

请求体参数说明:

1. model参数 目前有两个模型可用:

a) deepseek-chat


模型已全面升级为DeepSeek-V3,接口不变。通过指定model='deepseek-    chat'即可调用DeepSeek-V3。  

b) deepseek-reasoner


DeepSeek最新推出的推理模型DeepSeek-R1,通过指定model='deepseek-reasoner',即可调用DeepSeek-R1。  

根据个人需求选择即可!

2. stream参数 代表 是否流式响应:

a) stream=False(非流式响应)


API 会一次性返回完整的响应内容。也就是说,API 会在处理完整个请求后,将所有结果一次性返回给客户端。这种方式适合处理较小的请求或需要一次性获取完整结果的场景。  

b) stream=True(流式响应)


API 会以流式(streaming)的方式返回响应内容。这意味着 API 会逐步生成结果,并通过多次响应(chunks)将数据实时返回给客户端。这种方式适合处理较大的请求或需要实时获取部分结果的场景。

我们一般情况下,都是使用stream=False(非流式响应),代码简单,适合大多数常规场景。

进阶使用

在以上简单使用的基础上,我们优化一下输入指令,让结果更加清晰!

1.优化指令

同样想了解如何学习Python

首先,需要将系统角色定位一下,如:

role_system="我是一名专业的Python开发工程师"

然后,优化指令,如:

role_user="在每日可用2小时(19:00-21:00)、脑力峰值下降30%的晚间时段,设计Python机器学习进阶计划(需兼容Anki记忆曲线)"

2.具体实现

将添加的 角色 和 优化的指令传入请求体:


from openai import OpenAI

client = OpenAI(api_key="deepseek创建的api key", base_url="https://api.deepseek.com")

role_system="我是一名专业的Python开发工程师"
role_user="在每日可用2小时(19:00-21:00)、脑力峰值下降30%的晚间时段,设计Python机器学习进阶计划(需兼容Anki记忆曲线)"

response = client.chat.completions.create(
    model="deepseek-chat",
    messages=[
        {"role": "system", "content": role_system},
        {"role": "user", "content": role_user},
    ],
    stream=False
)

print(response.choices[0].message.content)

结果:

这个结果,对比上一个,是不是更加清晰了呢

这里我们可以发现,明确 角色 和 清晰的指令,会更加贴近你想要的答案

高阶使用

在以上的基础上,我们添加一些相应的参数,试试效果!

一起往下看~~

1.自定义模型参数

这里我们添加3个参数:

temperature=1.3``top_p=0.9``max_tokens=500
参数说明:

1. temperature:

控制生成文本的随机性,值越低越确定,temperature 参数默认为 1.0。官方给出的参考如下:

2. top_p:

控制生成文本的多样性,值越低越集中

3. max_tokens:

限制生成文本的最大长度,节省资源的同时,会让语言更加精简。官方Tokens计算量如下:

2.具体实现

将 角色、指令 和 参数 一同 传入请求体:

from openai import OpenAI
# 初始化客户端
client = OpenAI(api_key="deepseek创建的api key", base_url="https://api.deepseek.com")
# 系统角色和用户输入
role_system = "我是一名专业的Python开发工程师"
role_user = "在每日可用2小时(19:00-21:00)、脑力峰值下降30%的晚间时段,设计Python机器学习进阶计划(需兼容Anki记忆曲线)"


response = client.chat.completions.create(
    model="deepseek-chat",
    messages=[
        {"role": "system", "content": role_system},
        {"role": "user", "content": role_user},
    ],
    temperature=1.3,
    top_p=0.9,
    max_tokens=500,
    stream=False
)
# 输出
print(response.choices[0].message.content)

结果:

再看看这个结果,对比上面两个,是不是更加有条理和清晰了呢

常见问题与解决方案

通过代码调用api的方式,过程中多多少少会有些问题,比如一些常见的,

(1) API 调用失败

检查 API 密钥:确保 API 密钥正确且未过期。

查看 API 文档:确认请求地址和参数是否符合 API 文档要求。

调试请求:使用工具(如 Postman)测试请求,排查问题。

常见的错误码,如下:

(2) 服务限速

如果 30 分钟后,请求仍未完成,服务器将关闭连接。官方提示:

(2) 生成效果不理想

调整参数:尝试不同的 `temperature` 或 `max_tokens` 值。

优化输入:定义准确的角色,提供更清晰、具体的输入指令。

总 结

通过 Python 调用 DeepSeek API,你可以快速实现文本生成、代码补全等任务。

有一点,使用Python 调用 DeepSeek API是消费的,但价格很亲民,这点请知悉!

希望这篇分享能帮助你轻松搞定 DeepSeek API 的调用!

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

DeepSeek全套安装部署资料

在这里插入图片描述

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值