【大模型实战】Lora微调在金融场景中的应用与技巧解析

一、金融大模型背景
  • 金融行业需要垂直领域LLM,因为存在金融安全和数据大多数存储在本地,在风控、精度、实时性有要求
  • (1)500亿参数的BloombergGPT
    • BloombergGPT金融大模型也是用transformer架构,用decoder路线, 构建目前规模最大的金融数据集FINPILE,对通用文本+金融知识的混合训练。
    • 用了512块40GB的A100 GPU,训练中备份了4个模型,每个模型分了128块GPU。
  • (2)度小满5月的【源轩大模型】
    • 使用hybrid-tuning方式,首个千亿参数金融大模型
    • 在通用能力评测中,轩辕有10.2%的任务表现超越ChatGPT 3.5, 61.22%的任务表现与之持平,涉及数学计算、场景写作、逻辑推理、文本摘要等13个主要维度。
  • 金融大模型GPT落地场景:
    • 新闻情感分类 ——> 金融机构判断对某事件看法,辅助量化策略、投资决策
    • 财务类知识问答 ——> 辅助金融机构进行信用评估,筛选概念股,辅助分析师对专业领域的学习
    • 财务报表分析和会计稽查 ——> 生成财务分析报告和招股书,辅助会计和审计
二、大模型的研究问题

在这里插入图片描述

  • LLM的理论基础:
    • 如Few/Zero-Shot Learning、In-Context Learning、Chain-of-Thought能力;
    • zero-shot是模型训练中没有接触过这个类别的样本,但仍能对没见过的类别进行分类;few-shot是每个类别中只有少量样本,希望模型学习一定类别的大量数据后,对于新类别的少量样本数据能快速学习。few-show是meta-learning的一种。
  • 网络架构:transformer架构,括分词、归一化方法、归一化位置、位置编码、注意力与偏置等常见模块。是否有比transformer更好的架构,如有学者受到数学相关方向的启发,提出非欧空间Manifold网络框架。
  • 大模型的高效计算:模型并行、tensor卸载、优化器卸载等,微软的deepspeed等工具
  • 推理效率:模型剪枝、知识蒸馏、参数量化等
  • 大模型的高效适配下游任务:
    • prompt learning提示学习:如指令微调
    • 参数高效微调:只调整大模型里的少量参数
  • 大模型的可控生成:通过指令微调、提示工程、思维链、RLHF等控制模型生成
  • 伦理问题:RLHF、RLAIF等对齐方法提高生成质量
  • 模型评估:专业考题进行评测、更强的模型给小模型打分、人工评测等、

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

三、大模型技术路线

在这里插入图片描述

  • Hugging Face 的 PEFT是一个库(LoRA 是其支持的技术之一,除此之外还有Prefix Tuning、P-Tuning、Prompt Tuning),可以让你使用各种基于 Transformer 结构的语言模型进行高效微调。
  • AIpaca羊驼:让 OpenAI 的 text-davinci-003 模型以 self-instruct 方式生成 52K 指令遵循(instruction-following)样本,以此作为 Alpaca 的训练数据,最后训练的羊驼只有7B参数量。可以使用LoRA微调优化。
  • LLM技术思路:
    • 语言模型:llama、bloom、glm等
    • 指令微调数据:alpaca_data、bella_data、guanaco_data等。目前指令微调数据上,很依赖alpaca以及chatgpt的self-instruct数据。数据处理参考上图
    • 微调加速: lora(如Alpaca-Lora)等,还可以使用peft库、量化工具包bitsandbytes、deepspeed(先读torch.distributed和ColossalAI再搞)、llama.cpp量化模型。在LoRA方法提出之前,也有很多方法尝试解决大模型微调困境的方法。其中有两个主要的方向:
      • 添加adapter层。adapter就是固定原有的参数,并添加一些额外参数用于微调;
      • 由于某种形式的输入层激活。
  • 训练优化方法:量化、3D并行、cpu卸载
四、LLaMA家族模型

在这里插入图片描述

五、Lora模型微调的原理
  • prompt的本质是参数有效性学习(parameter-efficient learning, PEL),因为PLM全量参数更新训练耗时,而在参数有效性学习中,大模型只需指定或额外加入少量的可训练参数,冻结其他参数,提高训练效率和保证质量

在这里插入图片描述

  • Lora低秩自适应,low-rank adaption,额外引入了可训练的低秩分解矩阵,同时固定预训练权重。通过反向传播学习分解的矩阵,将适应任务的新权重矩阵分解为低维(较小)矩阵,而不会丢失太多信息。
    • 可以将新的lora权重矩阵与原始预训练权重合并,在推理中不会产生额外的开销;如上图所示,左边是预训练模型的权重,输入输出维度都是d,在训练时被冻结参数,右边对A使用随机的高斯初始化,B在训练初始为0。一个预训练的权重矩阵,使用低秩分解来表示,初始时△W=BA: h = W 0 x + Δ W x = W 0 x + B A x h=W_0 x+\Delta W x=W_0 x+B A x h=W0​x+ΔWx=W0​x+BAx
    • LoRA原理:即在大型语言模型上对指定参数增加额外的低秩矩阵,并在模型训练过程中,仅训练而外增加的参数。当“秩值”远小于原始参数维度时,新增的低秩矩阵参数量很小,达到仅训练很小的参数,就能获取相应结果。
    • 冻结预训练模型权重,并将可训练的秩分解矩阵注入到Transformer层的每个权重中,大大减少了下游任务的可训练参数数量。实际上是增加了右侧的“旁支”,也就是先用一个Linear层A,将数据从 d维降到r,再用第二个Linear层B,将数据从r变回d维。最后再将左右两部分的结果相加融合,得到输出的hidden_state
  • 评价LLM生成文本的指标:困惑度、BLEU 和 ROUGE等

在这里插入图片描述

  • Alpaca-Lora:基于LLaMA(7B)微调
    项目链接:https://github.com/tloen/alpaca-lora
    权重地址:https://huggingface.co/decapoda-research/llama-7b-hf
    • 项目诞生原因:Stanford Alpaca羊驼 是在 LLaMA 整个模型上微调,即对预训练模型中的所有参数都进行微调(full fine-tuning)。但该方法对于硬件成本要求仍然偏高且训练低效。LLaMA没有经过指令微调,生成效果较差
  • 因此,Alpaca-Lora:利用 Lora 技术,在冻结原模型 LLaMA 参数的情况下,通过往模型中加入额外的网络层,并只训练这些新增的网络层参数。由于这些新增参数数量较少,这样不仅微调的成本显著下降(使用一块 RTX 4090 显卡,只用 5 个小时就训练了一个与 Alpaca 水平相当的模型,将这类模型对算力的需求降到了消费级),还能获得和全模型微调(full fine-tuning)类似的效果。
    • 将LLaMA原始转钟转为transformers库对应的模型文件格式(也可以直接从huggingface上下载转好的模型,参考
    • 用LoRA(Low-rank Adaptation)微调模型、模型推理
    • 将 LoRA 权重合并回基础模型以导出为 HuggingFace 格式和 PyTorch state_dicts。以帮助想要在 llama.cpp 或 alpaca.cpp 等项目中运行推理的用户
六、基于mt0-large进行Lora微调实战
  • 下面以mt0-large模型进行lora为例:
  • 选用金融领域情感分析任务financial_sentiment_analysis,给定一个句子,要求识别出该句子是negative、positive还是neutral三个中的哪一个
next(iter(train_dataloader)).keys()
Out[2]: dict_keys(['input_ids', 'attention_mask', 'labels'])

# train_dataset.data如下所示
input_ids: [[[486,7834,304,259,35610,...,0,0,0,0,0],[259,229832,259,277,263,...,0,0,0,0,0],...,[259,96890,259,5330,259,...,0,0,0,0,0],[486,5835,259,39509,259,...,0,0,0,0,0]],[[1494,1546,259,69541,259,...,0,0,0,0,0],[486,7495,13159,339,2847,...,0,0,0,0,0],...,[20871,72726,702,92223,332,...,0,0,0,0,0],[486,584,193394,347,11470,...,0,0,0,0,0]],[[274,298,259,62434,263,...,0,0,0,0,0],[1477,514,1904,259,263,...,0,0,0,0,0],...,[143129,268,259,277,263,...,0,0,0,0,0],[35446,339,31499,285,288,...,0,0,0,0,0]]]
attention_mask: [[[1,1,1,1,1,...,0,0,0,0,0],[1,1,1,1,1,...,0,0,0,0,0],...,[1,1,1,1,1,...,0,0,0,0,0],[1,1,1,1,1,...,0,0,0,0,0]],[[1,1,1,1,1,...,0,0,0,0,0],[1,1,1,1,1,...,0,0,0,0,0],...,[1,1,1,1,1,...,0,0,0,0,0],[1,1,1,1,1,...,0,0,0,0,0]],[[1,1,1,1,1,...,0,0,0,0,0],[1,1,1,1,1,...,0,0,0,0,0],...,[1,1,1,1,1,...,0,0,0,0,0],[1,1,1,1,1,...,0,0,0,0,0]]]
labels: [[[59006,1,-100],[59006,1,-100],...,[59006,1,-100],[59006,1,-100]],[[18205,1,-100],[59006,1,-100],...,[259,32588,1],[18205,1,-100]],[[59006,1,-100],[59006,1,-100],...,[59006,1,-100],[59006,1,-100]]]



  • 下面借助peft库(Parameter-Efficient Fine-Tuning)进行微调,支持如下tuning:
    • Adapter Tuning(固定原预训练模型的参数 只对新增的adapter进行微调)
    • Prefix Tuning(在输入token前构造一段任务相关的virtual tokens作为prefix,训练时只更新Prefix不分的参数,而Transformer的其他不分参数固定,和构造prompt类似,只是prompt是人为构造的即无法在模型训练时更新参数,而Prefix可以学习<隐式>的prompt)
    • Prompt Tuning(Prefix Tuning的简化版,只在输入层加入prompt tokens,并不需要加入MLP)
    • P-tuning(将prompt转为可学习的embedding层,v2则加入了prompts tokens作为输入)
    • LoRA(Low-Rank Adaption,为了解决adapter增加模型深度而增加模型推理时间、上面几种tuning中prompt较难训练,减少模型的可用序列长度)
      • 该方法可以在推理时直接用训练好的AB两个矩阵和原预训练模型的参数相加,相加结果替换原预训练模型参数。
      • 相当于用LoRA模拟full-tunetune过程
# !/usr/bin/python
# -*- coding: utf-8 -*-
"""
@Author    : guomiansheng
@Software  : Pycharm
@Contact   : 864934027@qq.com
@File      : main.py
"""
from transformers import AutoModelForSeq2SeqLM
from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, LoraConfig, TaskType
import torch
from datasets import load_dataset
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from transformers import AutoTokenizer
from torch.utils.data import DataLoader
from transformers import default_data_collator, get_linear_schedule_with_warmup
from tqdm import tqdm
from datasets import load_dataset

def train_model():
    # device = "cuda"
    device = "mps"
    model_name_or_path = "bigscience/mt0-large"
    tokenizer_name_or_path = "bigscience/mt0-large"
    checkpoint_name = "financial_sentiment_analysis_lora_v1.pt"
    text_column = "sentence"
    label_column = "text_label"
    max_length = 128
    lr = 1e-3
    num_epochs = 3
    batch_size = 8

    # 搭建model
    peft_config = LoraConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32,
                             lora_dropout=0.1)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)
    model = get_peft_model(model, peft_config)
    model.print_trainable_parameters()

    # 加载数据
    dataset = load_dataset("financial_phrasebank", "sentences_allagree")
    dataset = dataset["train"].train_test_split(test_size=0.1)
    dataset["validation"] = dataset["test"]
    del dataset["test"]

    classes = dataset["train"].features["label"].names
    dataset = dataset.map(
        lambda x: {"text_label": [classes[label] for label in x["label"]]},
        batched=True,
        num_proc=1,
    )

    # 训练数据预处理
    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)

    def preprocess_function(examples):
        inputs = examples[text_column]
        targets = examples[label_column]
        model_inputs = tokenizer(inputs, max_length=max_length, padding="max_length", truncation=True,
                                 return_tensors="pt")
        labels = tokenizer(targets, max_length=3, padding="max_length", truncation=True, return_tensors="pt")
        labels = labels["input_ids"]
        labels[labels == tokenizer.pad_token_id] = -100
        model_inputs["labels"] = labels
        return model_inputs


    processed_datasets = dataset.map(
        preprocess_function,
        batched=True,
        num_proc=1,
        remove_columns=dataset["train"].column_names,
        load_from_cache_file=False,
        desc="Running tokenizer on dataset",
    )

    train_dataset = processed_datasets["train"]
    eval_dataset = processed_datasets["validation"]

    train_dataloader = DataLoader(
        train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True
    )
    eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)

    # 设定优化器和正则项
    optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
    lr_scheduler = get_linear_schedule_with_warmup(
        optimizer=optimizer,
        num_warmup_steps=0,
        num_training_steps=(len(train_dataloader) * num_epochs),
    )

    # 训练和评估
    model = model.to(device)

    for epoch in range(num_epochs):
        model.train()
        total_loss = 0
        for step, batch in enumerate(tqdm(train_dataloader)):
            batch = {k: v.to(device) for k, v in batch.items()}
            outputs = model(**batch)
            loss = outputs.loss
            total_loss += loss.detach().float()
            loss.backward()
            optimizer.step()
            lr_scheduler.step()
            optimizer.zero_grad()

        model.eval()
        eval_loss = 0
        eval_preds = []
        for step, batch in enumerate(tqdm(eval_dataloader)):
            batch = {k: v.to(device) for k, v in batch.items()}
            with torch.no_grad():
                outputs = model(**batch)
            loss = outputs.loss
            eval_loss += loss.detach().float()
            eval_preds.extend(
                tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(),
                                       skip_special_tokens=True)
            )

        eval_epoch_loss = eval_loss / len(eval_dataloader)
        eval_ppl = torch.exp(eval_epoch_loss)
        train_epoch_loss = total_loss / len(train_dataloader)
        train_ppl = torch.exp(train_epoch_loss)
        print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}")

    # 保存模型
    peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}"
    model.save_pretrained(peft_model_id)

def inference_model():
    # device = "cuda"
    device = "mps"
    model_name_or_path = "bigscience/mt0-large"
    tokenizer_name_or_path = "bigscience/mt0-large"
    checkpoint_name = "financial_sentiment_analysis_lora_v1.pt"
    text_column = "sentence"
    label_column = "text_label"
    max_length = 128
    lr = 1e-3
    num_epochs = 3
    batch_size = 8

    # 搭建model
    peft_config = LoraConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32,
                             lora_dropout=0.1)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)
    model = get_peft_model(model, peft_config)
    model.print_trainable_parameters()

    # 加载数据
    dataset = load_dataset("financial_phrasebank", "sentences_allagree")
    dataset = dataset["train"].train_test_split(test_size=0.1)
    dataset["validation"] = dataset["test"]
    del dataset["test"]

    classes = dataset["train"].features["label"].names
    dataset = dataset.map(
        lambda x: {"text_label": [classes[label] for label in x["label"]]},
        batched=True,
        num_proc=1,
    )

    # 训练数据预处理
    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)

    def preprocess_function(examples):
        inputs = examples[text_column]
        targets = examples[label_column]
        model_inputs = tokenizer(inputs, max_length=max_length, padding="max_length", truncation=True,
                                 return_tensors="pt")
        labels = tokenizer(targets, max_length=3, padding="max_length", truncation=True, return_tensors="pt")
        labels = labels["input_ids"]
        labels[labels == tokenizer.pad_token_id] = -100
        model_inputs["labels"] = labels
        return model_inputs


    processed_datasets = dataset.map(
        preprocess_function,
        batched=True,
        num_proc=1,
        remove_columns=dataset["train"].column_names,
        load_from_cache_file=False,
        desc="Running tokenizer on dataset",
    )

    train_dataset = processed_datasets["train"]
    eval_dataset = processed_datasets["validation"]

    train_dataloader = DataLoader(
        train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True
    )
    eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)

    # 设定优化器和正则项
    optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
    lr_scheduler = get_linear_schedule_with_warmup(
        optimizer=optimizer,
        num_warmup_steps=0,
        num_training_steps=(len(train_dataloader) * num_epochs),
    )

    # 训练和评估
    model = model.to(device)

    # 模型推理预测
    from peft import PeftModel, PeftConfig

    peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}"
    config = PeftConfig.from_pretrained(peft_model_id)
    model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)
    model = PeftModel.from_pretrained(model, peft_model_id)
    model.eval()

    i = 0
    inputs = tokenizer(dataset["validation"][text_column][i], return_tensors="pt")
    print(dataset["validation"][text_column][i])
    print(inputs)
    with torch.no_grad():
        outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10)
        print(outputs)
        print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
    print("=============test=============")

if __name__ == '__main__':
    # train_model()
    inference_model()



可以看到上面的LoraConfig参数如下:

peft_config = LoraConfig(task_type=TaskType.SEQ_2_SEQ_LM,
                         inference_mode=False,
                         r=8,
                         lora_alpha=32,
                         lora_dropout=0.1)



  • task_type:任务类型:
class TaskType(str, enum.Enum):
    SEQ_CLS = "SEQ_CLS"   常规分类任务
    SEQ_2_SEQ_LM = "SEQ_2_SEQ_LM" seq2seq任务
    CAUSAL_LM = "CAUSAL_LM"  LM任务
    TOKEN_CLS = "TOKEN_CLS"  token的分类任务:序列标注之类的



  • inference_mode
  • r:lora的秩;lora_A用高斯分布初始化,lora_B用0初始化
  • lora_alpha:lora微调的缩放系数
  • lora_dropout:lora微调的dropout系数
  • learning_rate:adamw优化器的初始学习速率

也可以看LoraConfig类的定义中的属性:

class LoraConfig(PeftConfig):
    r: int = field(default=8, metadata={"help": "Lora attention dimension"})
    target_modules: Optional[Union[List[str], str]] = field(
        default=None,
        metadata={
            "help": "List of module names or regex expression of the module names to replace with Lora."
            "For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' "
        },
    )
    lora_alpha: int = field(default=None, metadata={"help": "Lora alpha"})
    lora_dropout: float = field(default=None, metadata={"help": "Lora dropout"})
    fan_in_fan_out: bool = field(
        default=False,
        metadata={"help": "Set this to True if the layer to replace stores weight like (fan_in, fan_out)"},
    )
    bias: str = field(default="none", metadata={"help": "Bias type for Lora. Can be 'none', 'all' or 'lora_only'"})
    modules_to_save: Optional[List[str]] = field(
        default=None,
        metadata={
            "help": "List of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint. "
            "For example, in Sequence Classification or Token Classification tasks, "
            "the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved."
        },
    )
    init_lora_weights: bool = field(
        default=True,
        metadata={"help": "Whether to initialize the weights of the Lora layers."},
    )

    def __post_init__(self):
        self.peft_type = PeftType.LORA



  • r (int): Lora attention dimension.
  • target_modules (Union[List[str],str]): The names of the modules to apply Lora to.
  • lora_alpha (float): The alpha parameter for Lora scaling.
  • lora_dropout (float): The dropout probability for Lora layers.
  • fan_in_fan_out (bool): Set this to True if the layer to replace stores weight like (fan_in, fan_out).
    • For example, gpt-2 uses Conv1D which stores weights like (fan_in, fan_out) and hence this should be set to True.:
  • bias (str): Bias type for Lora. Can be ‘none’, ‘all’ or ‘lora_only’
  • modules_to_save (List[str]):List of modules apart from LoRA layers to be set as trainable
    and saved in the final checkpoint.

具体Lora_layer层的定义如下,lora是在自定义的embedding类中执行的(自定义embedding类,继承nn.embeddingloralayer类)

class LoraLayer:
    def __init__(
        self,
        in_features: int,
        out_features: int,
    ):
        self.r = {}
        self.lora_alpha = {}
        self.scaling = {}
        self.lora_dropout = nn.ModuleDict({})
        self.lora_A = nn.ModuleDict({})
        self.lora_B = nn.ModuleDict({})
        # For Embedding layer
        self.lora_embedding_A = nn.ParameterDict({})
        self.lora_embedding_B = nn.ParameterDict({})
        # Mark the weight as unmerged
        self.merged = False
        self.disable_adapters = False
        self.in_features = in_features
        self.out_features = out_features

    def update_layer(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights):
        self.r[adapter_name] = r
        self.lora_alpha[adapter_name] = lora_alpha
        if lora_dropout > 0.0:
            lora_dropout_layer = nn.Dropout(p=lora_dropout)
        else:
            lora_dropout_layer = nn.Identity()

        self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer}))
        # Actual trainable parameters
        if r > 0:
            self.lora_A.update(nn.ModuleDict({adapter_name: nn.Linear(self.in_features, r, bias=False)}))
            self.lora_B.update(nn.ModuleDict({adapter_name: nn.Linear(r, self.out_features, bias=False)}))
            self.scaling[adapter_name] = lora_alpha / r
        if init_lora_weights:
            self.reset_lora_parameters(adapter_name)
        self.to(self.weight.device)

    def update_layer_embedding(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights):
        self.r[adapter_name] = r
        self.lora_alpha[adapter_name] = lora_alpha
        if lora_dropout > 0.0:
            lora_dropout_layer = nn.Dropout(p=lora_dropout)
        else:
            lora_dropout_layer = nn.Identity()

        self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer}))
        # Actual trainable parameters
        if r > 0:
            self.lora_embedding_A.update(
                nn.ParameterDict({adapter_name: nn.Parameter(self.weight.new_zeros((r, self.in_features)))})
            )
            self.lora_embedding_B.update(
                nn.ParameterDict({adapter_name: nn.Parameter(self.weight.new_zeros((self.out_features, r)))})
            )
            self.scaling[adapter_name] = lora_alpha / r
        if init_lora_weights:
            self.reset_lora_parameters(adapter_name)
        self.to(self.weight.device)

    def reset_lora_parameters(self, adapter_name):
        if adapter_name in self.lora_A.keys():
            # initialize A the same way as the default for nn.Linear and B to zero
            nn.init.kaiming_uniform_(self.lora_A[adapter_name].weight, a=math.sqrt(5))
            nn.init.zeros_(self.lora_B[adapter_name].weight)
        if adapter_name in self.lora_embedding_A.keys():
            # initialize a the same way as the default for nn.linear and b to zero
            nn.init.zeros_(self.lora_embedding_A[adapter_name])
            nn.init.normal_(self.lora_embedding_B[adapter_name])



七、对chatglm2进行lora微调

lora微调后需要将lora权重和原始模型权重合并。

from transformers import AutoTokenizer, AutoModel, AutoConfig
from peft import PeftModel, PeftConfig

# lora tuning
model_name_or_path = "../model/chatglm2-6b"
# 训练后的lora保存的路径
peft_model_id = "../chatglm_v2_6b_lora/output/checkpoint-3000"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='auto',
                                 torch_dtype=torch.bfloat16).to("cuda")  # .half().cuda()
model = PeftModel.from_pretrained(model, peft_model_id)
model = model.eval()

# 多显卡支持,使用下面两行代替上面一行,将num_gpus改为你实际的显卡数量
# from utils import load_model_on_gpus
# model = load_model_on_gpus("THUDM/chatglm2-6b", num_gpus=2)
# model = model.eval()



这里进行lora微调的效果是比官方的p-tuning v2效果好的,并且没有出现严重的知识遗忘特点,比如问题你是谁,他能回答自己是chatglm blabla。

用户:你是谁
你是谁

ChatGLM:我是一个名为 ChatGLM2-6B 的人工智能助手,是基于清华大学 KEG 实验室和智谱 AI 公司于 2023 年共同训练的语言模型开发的。我的任务是针对用户的问题和要求提供适当的答复和支持。

用户:类型#裙*版型#显瘦*风格#文艺*风格#简约*图案#印花*图案#撞色*裙下摆#压褶*裙长#连衣裙*裙领型#圆领
��#撞色*裙下摆#压褶*裙长#连衣裙*裙领型#圆领

ChatGLM:连衣裙简约的设计,采用撞色的印花图案,让整体显得很有文艺气息,又很显瘦。
小圆领的设计,简单大方,又很有气质。压褶的设计,让裙子看起来很有层次感,又很有质感。



可以和p-tuning v2对比刚才广告词生成的结果,p-tuning v2应该是在这种垂直领域更好一丢丢,比如对于长款裙还会描述遮住腿型,还描述文艺风格 满足你XX的气质吸引顾客。

用户:类型#裙*版型#显瘦*风格#文艺*风格#简约*图案#印花*图案#撞色*裙下摆#压褶*裙长#连衣裙*裙领型#圆领
��#撞色*裙下摆#压褶*裙长#连衣裙*裙领型#圆领

ChatGLM:这条裙子非常百搭,可以搭配各种不同的上衣,也可以作为连衣裙来穿。
它的版型比较有型,可以显瘦,而且它属于比较文艺的风格,可以满足你的小女人的气质。
这条裙子的风格比较简约,不繁杂,适合各种不同的搭配。它属于长款裙,可以遮住你的腿型,让你看起来更加高挑。



注意:将lora微调训练的权重、base model权重合可以参考merge_peft_adapter.py如下

# -*- coding: utf-8 -*-
"""
Usage:
python merge_peft_adapter.py \
    --base_model_name_or_path path/to/llama/model \
    --tokenizer_path path/to/llama/tokenizer \
    --peft_model_path path/to/lora/model \
    --output_dir path/to/output/dir

after merged, chatglm and baichuan model need copy python script to output dir.
"""

import argparse

import torch
from peft import PeftModel, PeftConfig
from transformers import (
    AutoModel,
    AutoTokenizer,
    BloomForCausalLM,
    BloomTokenizerFast,
    AutoModelForCausalLM,
    LlamaTokenizer,
    LlamaForCausalLM,
    AutoModelForSequenceClassification,
)

MODEL_CLASSES = {
    "bloom": (BloomForCausalLM, BloomTokenizerFast),
    "chatglm": (AutoModel, AutoTokenizer),
    "llama": (LlamaForCausalLM, LlamaTokenizer),
    "baichuan": (AutoModelForCausalLM, AutoTokenizer),
    "auto": (AutoModelForCausalLM, AutoTokenizer),
}

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_type', default=None, type=str, required=True)
    parser.add_argument('--base_model_name_or_path', default=None, required=True, type=str,
                        help="Base model name or path")
    parser.add_argument('--tokenizer_path', default=None, type=str,
                        help="Please specify tokenization path.")
    parser.add_argument('--peft_model_path', default=None, required=True, type=str,
                        help="Please specify LoRA model to be merged.")
    parser.add_argument('--resize_emb', action='store_true', help='Whether to resize model token embeddings')
    parser.add_argument('--output_dir', default='./merged', type=str)
    args = parser.parse_args()
    print(args)

    base_model_path = args.base_model_name_or_path
    peft_model_path = args.peft_model_path
    output_dir = args.output_dir
    print(f"Base model: {base_model_path}")
    print(f"LoRA model: {peft_model_path}")
    peft_config = PeftConfig.from_pretrained(peft_model_path)

    model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    if peft_config.task_type == "SEQ_CLS":
        print("Loading LoRA for sequence classification model")
        if args.model_type == "chatglm":
            raise ValueError("chatglm does not support sequence classification")
        base_model = AutoModelForSequenceClassification.from_pretrained(
            base_model_path,
            load_in_8bit=False,
            torch_dtype=torch.float16,
            trust_remote_code=True,
            device_map="auto",
        )
    else:
        print("Loading LoRA for causal language model")
        base_model = model_class.from_pretrained(
            base_model_path,
            load_in_8bit=False,
            torch_dtype=torch.float16,
            trust_remote_code=True,
            device_map="auto",
        )
    if args.tokenizer_path:
        tokenizer = tokenizer_class.from_pretrained(args.tokenizer_path, trust_remote_code=True)
    else:
        tokenizer = tokenizer_class.from_pretrained(peft_model_path, trust_remote_code=True)
    if args.resize_emb:
        base_model_token_size = base_model.get_input_embeddings().weight.size(0)
        if base_model_token_size != len(tokenizer):
            base_model.resize_token_embeddings(len(tokenizer))
            print(f"Resize vocabulary size {base_model_token_size} to {len(tokenizer)}")

    lora_model = PeftModel.from_pretrained(
        base_model,
        peft_model_path,
        device_map="auto",
        torch_dtype=torch.float16,
    )
    lora_model.eval()
    print(f"Merging with merge_and_unload...")
    base_model = lora_model.merge_and_unload()

    print("Saving to Hugging Face format...")
    tokenizer.save_pretrained(output_dir)
    base_model.save_pretrained(output_dir)
    print(f"Done! model saved to {output_dir}")

if __name__ == '__main__':
    main()



八、lora微调还是全参微调

一般全参会比lora微调好:https://github.com/huggingface/peft/issues/622

论文:《A Comparative Study between Full-Parameter and LoRA-basedFine-Tuning on Chinese Instruction Data for Instruction Following LargeLanguage Mode》:

  • FT效果好于lora微调。M是百万条。FT是lora时间的3-5倍。
  • 第三行是增量微调,效果更好

请添加图片描述
实验细节(评估模型使用GPT进行打分):
请添加图片描述

零基础如何学习大模型 AI

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

AI+零售:智能推荐系统和库存管理优化了用户体验和运营成本。AI可以分析用户行为,提供个性化商品推荐,同时优化库存,减少浪费。

AI+交通:自动驾驶和智能交通管理提升了交通安全和效率。AI技术可以实现车辆自动驾驶,并优化交通信号控制,减少拥堵。


这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述

四、LLM面试题

在这里插入图片描述

如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

  • 9
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值