大模型微调部署实战及类GPT工具的高效使用

  大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。

  本文主要介绍了专栏《大模型微调部署实战及类GPT工具的高效使用》的核心内容,希望对使用大语言模型的同学们有所帮助。

1. 前言

  随着时间的齿轮转动到2024年,各种行业大模型如雨后春笋般涌现。如何基于基座模型领域数据构建行业大模型成为了近期研究和落地的热点方向。因此基于大模型进行微调部署成为了大多数企业的日常操作,但模型微调存在相当的技术门槛,稍有差池或者经验不足极易造成过拟合(严重的灾难性遗忘)、或者欠拟合(无法有效学习特定领域知识)的情形。

在这里插入图片描述

  与此同时,善用AI的人利用各种GPT工具完成写文章、写总结、写代码、阅读论文、文本翻译等日常任务,极大提升了工作和生活的效率。为了帮助大家更好地理解和掌握上述内容,个人精心打造了全面且不断迭代的系统性课程

在这里插入图片描述

  但在大模型实践过程中,往往存在着各种各样的坑,不管是大模型的下载和使用,还是大模型的微调与部署,一个看似简单的小问题就需要花费非专业人士数个小时,更何况很多同学是刚入门不久的小白,所以很容易就从入门走向放弃

在这里插入图片描述
  但市面上的大模型实战课程质量参差不齐,要么步骤不够详细,要么只包含文字(没有必要的截图)。很多同学可能会卡在某个点上很长时间,从易到难比如:无法连接huggingface、下载高速下载github源码、微调前不知从何入手、微调过程中不知如何进行迭代和精进、微调后不知如何选择比较好的checkpoint、微调后无法判断是否达到了预期的效果。

  首先需要说明的是:由于现阶段推理模型(DeepSeek-R1)是一大研究热点,所以已开启狂暴更新模式,一周至少更新3篇+,希望能对同学们有所帮助。

  另外本课程包括以下主要内容:首先,我们将深入解析大模型的基本概念,其中包括从入门到精进的提示工程、主流大模型的System Prompt、GPT和LLaMA模型的进化之路。大模型的部署与推理是模型微调的前提,所以详细介绍了huggingface高速下载模型的实战代码、多种部署大模型API的实战教程、不同语言及其代码(包括Text2SQL)大模型的部署方案。接着,我们将详细讲解大模型微调的技巧和实验方法,包括大模型微调数据集构建方法、大模型微调选择模型的实战技巧、LoRA微调调参的实战技巧、LLama Factory单机和多机微调等实战教程、Lora Adapter可视化的实战教程、判断大模型微调是否产生灾难性遗忘的实战方案、大模型微调出错的解决方案。除此之外,我们将详细讲解GPT工具在不同场景下的高效使用方法,包括智能搜索、阅读论文、文本翻译、代码生成等实际场景。为了让大家更好的使用工作流提升工作效率和接入业务场景,近期也在更新大模型工作流的相关文章。

  本专栏致力于以图文并茂、通俗易懂、步骤详尽的形式对大模型重要知识点进行系统性讲解。 每一篇都是经过亲身的实践经历总结而来的,已订阅人数超过1100+,已更新文章125+,并且将持续更新,近期更新频率为一周2~3篇。帮助多名同学解决大模型部署、微调及其测评等各类实战问题。
在这里插入图片描述

2. 专栏亮点

  • 系统全面的大模型概念详解和实战应用课程,覆盖了大模型理论基础和实战应用的完整路径。
  • 每一篇文章都是经过精心撰写而成的,文章平均质量分数为92(远超其他热门和同类专栏)。
  • 实战文章均来自于亲身的实践经验,为了方便小白学习,通过图文的形式详细介绍了每一步的操作和正确执行结果,方便进行逐步的验证。
  • 持续更新前沿文章,近期更新频率为一周2~3篇,已更新篇数为106篇,目标更新篇数为500篇。

3. 你的收获

  • 掌握大模型的核心概念和应用实战,尤其是对大模型进行微调和部署。
  • 掌握使用GPT工具的方法和技巧,早日成为善用AI的人。
  • 高效学习精炼后的大模型前沿知识,有效提升学习效率。
  • 购买专栏可加入大模型交流群学习,群里还有不定期抽奖送书等福利。

4. 详细目录

第一章:大模型的基础知识与核心概念

  1. ChatGPT启蒙之旅:弟弟妹妹的关键概念入门
  2. GPT内功心法:搜索思维到GPT思维的转换
  3. 从用户的角度谈GPT时代技术突破的两大关键逻辑
  4. AIGC提示(prompt)工程之开宗明义篇
  5. AIGC提示(prompt)飞升方法:走向专家之路
  6. GPT-4o模型介绍和使用方法
  7. Claude3系统解读与使用测评
  8. LLaMA模型系统解读
  9. 多图详解LLaMA 3的使用方法和进化之路
  10. Meta大佬亲授LLaMA 3的奥秘
  11. 从System Prompt来看Claude3、Kimi和ChatGLM4之间的差距
  12. 从System Prompt来看GPT-3.5到GPT-4的进化
  13. 详解OpenAI大佬每日读物: The Bitter Lesson
  14. 如何从宏观层面构建优秀的大语言模型
  15. 大模型训练数据多样性的重要性
  16. 大模型量化方法总结
  17. 查看大模型对应的准确参数量和网络结构的实战代码
  18. 详解LangChain Agents
  19. baichuan 2模型使用的注意事项
  20. baichuan(百川)1和2的tokenizer的比较

第二章:大模型的部署与推理

  1. huggingface连接不上的解决方案(持续更新)
  2. github连接不上的解决方案
  3. huggingface高速下载模型的实战代码
  4. 计算huggingface模型占用硬盘空间的实战代码
  5. FP16、BF16、INT8、INT4精度模型加载所需显存以及硬件适配的分析
  6. 部署大模型API的实战教程
  7. 大模型推理加速框架vllm部署的实战方案
  8. 详解FastChat部署大模型API的实战教程
  9. 本地部署GPT的实战方案
  10. ChatGPT API实现多轮对话的实战代码
  11. Qwen2本地部署的实战教程
  12. GLM-4本地部署的实战教程
  13. Llama3本地部署的解决方案
  14. 中文开源模型Command R+的在线使用和本地部署的解决方案
  15. ChatDoctor本地部署应用的实战方案
  16. 通义千问7B本地部署的实战方案
  17. baichuan2(百川2)本地部署的实战方案
  18. CodeLlama本地部署的实战方案
  19. ChatGLM2本地部署的实战方案
  20. ChatGLM3 本地部署的解决方案
  21. ChatGLM3设置角色和工具调用的解决方案
  22. GLM-130B本地部署的实战方案
  23. MiniGPT-4本地部署的实战方案
  24. Vicuna本地部署的实战方案
  25. CPM-Bee本地部署的实战方案
  26. 天鹰340亿(AquilaChat2-34B-16K)本地部署的解决方案
  27. Orion-14B-Chat-RAG本地部署的解决方案
  28. Orion-14B-Chat-Plugin本地部署的解决方案
  29. Orion-14B-Chat-Plugin [model server error]解决方案
  30. 下载马斯克Grok-1模型的实战代码
  31. 大模型推理速度测评的实战代码
  32. LLaMA Factory在预测阶段时添加原有问题的实战代码

第三章:大模型的微调与优化

  1. 大模型微调数据集构建方法(持续更新)
  2. 大模型LoRA微调调参的实战技巧(持续更新)
  3. 大模型微调选择模型的实战技巧(持续更新)
  4. 模型全参数训练和LoRA微调所需显存的分析
  5. LLaMA Factory单机微调的实战教程
  6. LLaMA Factory多卡微调的实战教程
  7. 基于大模型的Text2SQL微调的实战教程
  8. 基于大模型的Text2SQL微调的实战教程(二)
  9. Lora Adapter可视化的实战教程
  10. 大模型自我认知微调的实战教程
  11. ChatGLM LoRA微调实战方案
  12. ChatGLM ptuning 的实战方案
  13. 判断大模型微调是否产生灾难性遗忘的实战方案
  14. 大模型微调和RAG的应用场景
  15. 大模型微调出错的解决方案
  16. 大模型提问中包括时间的实战方案

第四章:Text2SQL

  1. Text2SQL基座模型选择的实战教程
  2. 最强开源Text2SQL大模型本地部署的解决方案
  3. 基于大模型的Text2SQL微调的实战教程(新)
  4. Text2SQL中不同数据库SQL之间转换的实战代码
  5. Langchain+本地大语言模型进行数据库操作的实战代码
  6. Text2SQL提问中包括时间的实战方案
  7. Text2SQL中反思纠错的实战方案

第五章:GPT工具的高效使用方法

  1. AIGC时代高效阅读论文实操
  2. AIGC高效进行网页总结的工具使用
  3. 高效翻译工具GPT插件的使用教程
  4. 国内智能搜索工具实战教程
  5. 基于GPT-3.5和GPT-4的免费代码生成工具
  6. 搜索神器Perplexity的详细使用方法
  7. 搜索神器Phind的详细使用方法
  8. 探寻大模型回答9.9和9.11犯错的根本原因
  9. 不同问题来评测百度、谷歌、ChatGPT、Phind、GPT-4
  10. 速评谷歌开源大模型Gemma 7B
  11. 使用AIGC工具巧用Linux系统
  12. 使用AIGC工具提升论文阅读效率
  13. 使用ChatGPT工具阅读文献的实战教程
  14. 使用ChatGPT设计选择题
  15. 使用ChatGPT提升记忆效率
  16. 用好GPT关键诀窍之上下文学习
  17. 用好ChatGPT之准确分配角色
  18. 使用范例调教ChatGPT
  19. ChatGPT和GPT-4帮你写人物传记
  20. ChatGPT和GPT-4带你选笔记本电脑
  21. 大模型生成人物关系思维导图的实战教程
  22. 图文详解GPT-4最强对手Claude2的使用方法
  23. Claude2轻松解决代码Bug的实战方案

第六章:DeepSeek模型相关内容(正在更新中)

  1. deepseek提示词实战教程(持续更新)
  2. DeepSeek R1蒸馏版模型部署的实战教程

第七章:大模型工作流(正在更新中)

  1. 通过命令行工作流提升工作效率的实战教程(持续更新)
  2. 使用工作流产生高质量翻译内容的实战教程
数据集介绍:多道路车辆目标检测数据集 一、基础信息 数据集名称:多道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与别标签的精准对应。 别平衡设计: 四车辆样本量经科学配比,避免模型训练时的别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
内容概要:本文介绍了DeepSeek与Mermaid结合实现可视化图表自动化生成的技术及其应用场景。DeepSeek是一款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有强大的自然语言处理能力,能理解复杂的自然语言指令并生成对应的Mermaid代码。Mermaid是一款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率和准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法和图表型,并通过一个电商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备一定编程基础和技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速生成业务流程图和功能关系图;②设计阶段,生成系统架构图和数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,生成测试用例和测试报告图表,直观展示测试结果。 阅读建议:在学习和使用DeepSeek与Mermaid的过程中,建议读者结合具体项目需求,多实践生成图表和代码,熟悉两者的交互方式和使用技巧,充分利用官方文档和社区资源解决遇到的问题,逐步提高图表绘制和代码编写的准确性和效率。
### 关于 DeepSeek 连接数据库的方法 DeepSeek 是一种强大的自然语言处理工具,能够理解和生成复杂的 SQL 查询语句。为了实现这一功能,通常会涉及到将 DeepSeek 与特定的数据库管理系统(DBMS)集成。 #### 使用 DeepSeek 生成并执行 SQL 查询 当使用 DeepSeek 来连接数据库时,可以采用如下方式: 1. **准备环境** 安装必要的 Python 库来管理数据库连接以及运行 DeepSeek 模型。例如,对于 MySQL 数据库来说,可能需要安装 `mysql-connector-python` 或者其他适合目标 DBMS 的驱动程序[^1]。 2. **配置数据库连接参数** 创建一个包含主机名、端口、用户名、密码等信息的数据源名称(DSN),以便后续建立实际链接。这一步骤具体取决于所使用的编程语言及其对应的 ORM 工具或原生 API。 3. **构建查询接口** 利用 DeepSeek 解析用户的自然语言输入,并转换成有效的 SQL 语法结构。此过程中应考虑加入适当的错误检测机制以提高系统的健壮性。 4. **发送请求至数据库服务器** 借助之前设置好的 DSN 和相应的客户端库发起对远程或本地数据库实例的操作命令。注意要遵循 ACID 特性的基本原则确保事务的一致性和隔离级别。 5. **获取返回的结果集** 处理来自数据库引擎反馈的信息,无论是成功还是失败的状态码都应当被妥善记录下来用于日志审计目的;而对于正常情况下获得的数据则可进一步加工呈现给最终用户查看。 ```python import mysql.connector from deepseek import generate_sql_query def connect_to_db(): connection = mysql.connector.connect( host='localhost', user='root', password='password', database='testdb' ) cursor = connection.cursor() query = "SELECT * FROM users WHERE age > %s" natural_language_input = "find all users older than 20 years old." generated_query, params = generate_sql_query(natural_language_input) try: cursor.execute(generated_query, params) result = cursor.fetchall() for row in result: print(row) except Exception as e: print(f"Error executing the query: {e}") finally: if connection.is_connected(): cursor.close() connection.close() connect_to_db() ```
评论 97
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

herosunly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值