大语言模型(LLM)正在引领人工智能领域的革命,从智能聊天机器人到数据分析,LLM都扮演着核心角色。无论你是初学者还是想要提升知识,这10个免费资源将帮助你深入了解LLM世界,提高你的综合技能和AI实践能力。
学习目标
-
发现10个免费学习LLM的资源
-
了解每个资源的优势
-
找到最适合你学习风格的资源
-
获取涵盖LLM基础知识的材料
-
通过免费课程和材料探索LLM的高级主题
目录
-
Cohere的LLM大学
-
Hugging Face NLP课程
-
MIT OpenCourseWare:高级自然语言处理
-
YouTube频道:Sentdex
-
FreeCodeCamp的NLP教程
-
Analytics Vidhya博客
-
LLMOps
-
LLM训练营
-
Google Cloud的大语言模型入门
-
微调大语言模型
1. Cohere的LLM大学
Cohere的LLM大学提供了专门的LLM学习方法。该平台提供深入的教程、网络研讨会和项目,重点关注LLM在各种应用中的实施。
-
主要内容:模型架构、微调、高级NLP技术
-
特色:行业专家主持的网络研讨会、实践项目、认证
-
目标受众:高级学习者和专业人士
https://cohere.com/llm-university

2. Hugging Face NLP课程
Hugging Face是NLP领域的主要参与者,是开源库和模型的存储库。它提供了一个全面的NLP课程,涵盖了从标记化到大规模模型部署的所有内容。
-
主要内容:标记化、模型训练、Transformers、部署
-
特色:交互式笔记本、社区支持、预训练模型访问
-
目标受众:具有一些NLP背景的中级学习者
https://huggingface.co/learn/nlp-course
3. MIT OpenCourseWare:高级自然语言处理
麻省理工学院的OpenCourseWare项目提供了一门免费的高级NLP课程,深入探讨了LLM的技术细节。
-
主要内容:NLP深度学习、句法分析、机器翻译
-
特色:严谨的学术内容、作业和测验
-
目标受众:高级学习者和学者
https://ocw.mit.edu/courses/6-864-advanced-natural-language-processing-fall-2005/
4. YouTube频道:Sentdex
Sentdex是一个提供机器学习、深度学习和NLP教程的YouTube频道。该频道的LLM内容对时间有限的学习者和喜欢视频课程的人很有帮助。
-
主要内容:LLM实现、Python编码、实际应用
-
特色:视频教程、实践编码课程、社区互动
-
目标受众:初学者到中级学习者
https://www.youtube.com/user/sentdex
5. FreeCodeCamp的NLP教程
FreeCodeCamp以其高质量的免费编程教程而闻名,他们的NLP教程也不例外。这个资源提供了从NLP入门到LLM等主题的一系列教程。
-
主要内容:NLP基础、LLM、实践编码练习
-
特色:自定进度学习、互动练习、社区支持
-
目标受众:初学者到中级学习者
https://www.freecodecamp.org/news/tag/nlp/
6. Analytics Vidhya博客
Analytics Vidhya的博客部分包含了关于LLM的综合文章,为数据科学爱好者提供了丰富的信息。
-
主要内容:LLM案例研究、教程、行业应用
-
特色:详细文章、真实案例研究、社区讨论
-
目标受众:中级到高级学习者
https://www.analyticsvidhya.com/blog/
7. LLMOps
LLMOps是一个专注于LLM管理和部署操作方面的平台。这个资源特别适合那些对大规模运行LLM的实际操作感兴趣的人。
-
主要内容:LLM部署、监控、扩展
-
特色:关注操作方面、实践教程、行业用例
-
目标受众:专业人士和高级学习者
https://llmops.com/
8. LLM训练营
LLM训练营是一个密集的LLM学习项目,旨在让参与者全面了解LLM生态系统。
-
主要内容:NLP基础、模型微调、部署策略
-
特色:基于项目的学习、认证、专家指导
-
目标受众:中级到高级学习者
https://fullstackdeeplearning.com/llm-bootcamp/
9. Google Cloud的大语言模型入门
Google Cloud提供了一个全面的LLM入门课程。这个资源非常适合那些想从云计算角度理解LLM的人。
-
主要内容:LLM基础、基于云的实现、Google Cloud工具
-
特色:云端内容、实践实验室、与Google Cloud集成
-
目标受众:对云计算感兴趣的初学者到中级学习者
https://www.cloudskillsboost.google/course_templates/539
10. 微调大语言模型
"微调大语言模型"课程涵盖了LLM微调的核心原则,并将其与提示工程区分开来。
-
主要内容:微调基础、与提示工程的区别、实际数据应用、优化策略
-
特色:使用真实数据集的实践、明确区分微调和提示工程、模型定制的实用技术、注重实际应用
-
目标受众:AI爱好者、数据科学家、机器学习工程师和希望增强LLM并将微调方法应用到项目中的开发人员
https://www.deeplearning.ai/short-courses/finetuning-large-language-models/
结论
学习大语言模型不需要花费高昂的费用,通过这10个免费资源,你现在可以免费开始探索LLM的世界。无论你喜欢严格组织的课程、实践作业和项目,还是全面的文章,这里都能满足你的需求。现在就开始探索这个令人兴奋的LLM领域吧!
零基础如何学习AI大模型
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~