一、Echarts简介
Echarts是一个基于 JavaScript 的开源可视化图表库,由百度开源,主要用于生成各种类型的图表,以直观地展示数据。Echarts支持折线图、柱状图、饼图、散点图、K线图等常规图表,支持地图、热力图、关系图、树图等特殊图表,支持图表组合展示。
二、实现过程
本案例可实现数据和图表合并输出,用户通过自然语言询问,通过大模型转换为sql语言,然后查询数据库并返回数据,再通过大模型将数据转换为标准Echarts格式数据,最终实现从用户自然语言提问到生成图文并茂可视化报告的全流程自动化。
1、创建知识库
本案例将数据库表保存到知识库,大模型根据知识库中的表结构进行SQL编写。
(1)进入Dify管理界面,点击“知识库”按钮,选择“创建知识库”。选择数据源:上传本地数据库文档。
(2)数据预处理
清洗和分段:对数据进行清洗、分段等预处理,确保数据质量。选择Embedding模型:在Dify中配置合适的Embedding模型(如bge-m3),用于将文档内容转换为向量。
(3) 知识库配置与优化
设置召回策略:为知识库配置召回策略,调整召回参数以优化问答效果。
2、创建工作流
(1)点击dify工作室选择”创建空白应用“,应用类型选择“chatflow”,工作流节点如下图所示:
3、节点解释
(1)大模型SQL生成节点
将知识检索的结果作为大模型的上下文,利用大模型的能力结合用户的提问编写SQL语句,注意Qwen3是混合模型,需要通过/no_think切换大模型为非深度思考模式。提示词如下:
/no_think# 角色你是SQL大师,擅长写SQL语句。# 任务1.你可以根据用户的问题结合数据库结构文档,写出合理的SQL语句。2.如果用户问最新的数据,请根据获取当前时间。3.输出的字段名称转为中文。# 输出只输出SQL语句,不要带任何除SQL语句之外的内容# 格式参考SELECT customer_name as 客户姓名,product_name AS 产品名称,quantity as 数量 FROM sales_order不要带有```sql\n****\n```\"等markdown标记
(2)SQL查询节点
SQL查询节点的作用是接收SQL语句,然后执行查询数据库操作并返回数据,这里使用rookie_text2data插件,可以在插件市场安装。
(3)图表转换节点
通过大模型的能力将数据库返回的数据转换为Echarts支持的标准数据格式,提示词如下:
/no_think#角色你是一个数据整理和echarts的专家,能够根据源数据智能整理并筛选计算出符合用户数据的echarts图表类型、标题及数据,确保echarts的配置项为一个标准且可解析的JSON格式,#技能1.根据用户问题和源数据自行判断哪种图表类型合适,从以下图表类型中选择一个输出:bar,line,pie,scatter,radar,category,tree。2.需严格按照以下示例生成内容。格式示例:```echarts{ "title": { "text": "产品总销量” }, "xAxis": { "type": "category", "data": ["平板电脑", "智能手机", "智能手环", "笔记本电脑"] }, "yAxis": { "type": "value" }, "series": [ { "name": "总销量", "type": "bar", "data": [117, 119, 95, 183] } ]}```#数据源数据:/上下文#任务输出结果仅保留acharts相关结构,严格按照示例格式。
3、效果展示
本案例详细介绍了如何利用Dify+Qwen3+Echarts+Mysql实现数据库数据的可视化。你可以结合自己的数据库表结构,将表结构元数据作为知识库供大模型学习,而无须更改工作流。图表类型也由大模型根据数据和用户提问智能生成。在实际应用中,我们只需针对不同的数据结构,多尝试几种大模型,从中挑选出效果最佳的方案即可。在我的测试中,Qwen3模型能够很好地满足需求。
最后的最后
感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。
为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。
这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。
这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
