AI大模型来了,钢铁行业如何应用
河北日报记者 米彦泽
■ 立足河北钢铁行业丰富的应用场景,推动人工智能全方位、深层次赋能钢铁行业高质量发展
■ 建立具有河北钢铁特色的数字化转型标准体系、评价体系,为钢铁行业高质量发展提供新动能、新优势
前不久,河北省钢铁行业数字化转型联盟入企对接活动(普阳钢铁站)暨AI大模型赋能钢铁行业催生新质生产力研讨会在武安市举办。
在河北普阳钢铁有限公司总经理石跃强看来,目前钢铁行业所面临的挑战,不是简单的周期性变化,而是随着大环境改变而产生的根本性变革。
如何在这场变革中保持盈利能力、培育新的利润增长点,是企业当前最关心和需要深入思考的问题。石跃强认为,步入高质量发展阶段,要用新技术改造提升传统产业,积极促进产业高端化、智能化、绿色化发展。
普阳钢铁已经开始探索在钢铁生产中应用AI技术。该公司在中厚板生产线二号线采用了AI视觉技术。以机前转钢工序为例,原来采用人工转钢,经常出现转多或者转少的情况,容易损坏对中设备。采用AI视觉技术后,实现了精准转钢,生产效率高了,设备不易坏了,还节约了成本。
“技术创新、绿色低碳、数字化转型是钢铁企业打造新质生产力的三条重要跑道,也将成为普阳钢铁穿越周期、打造差异化竞争优势的重要途径。”石跃强说。
①人工智能/大模型学习路线
②AI产品经理入门指南
③大模型方向必读书籍PDF版
④超详细海量大模型实战项目
⑤LLM大模型系统学习教程
⑥640套-AI大模型报告合集
⑦从0-1入门大模型教程视频
⑧AGI大模型技术公开课名额
AI大模型已成为多个行业的智能助手。如何以AI大模型赋能钢铁行业?
河钢数字技术股份有限公司技术总监李玉涛表示,目前,钢铁企业应用较多模型依旧是工业机理模型。对于AI大模型而言,其凭借“智慧涌现”特征在自然语言处理(NLP)与计算机视觉(CV)领域表现突出,但其不需要完全精准的结果,实现基本的拟合与归类即可。而钢铁企业涵盖复杂的生产流程,其工控作业需要相关模型返回具体且准确的结果,所以真正实现AI大模型赋能钢铁行业,需要研究设置大模型的参数并与现有专业的工艺机理模型结合。
在中国联通智慧钢铁军团专家刘东冶看来,目前,AI大模型轧钢工序场景应用前景最好,同时铁前、炼钢工序最迫切。刘东冶认为,AI大模型在钢铁行业的应用属于交叉学科范畴,因此需要各个专业之间进行融合协作。
设计靠实验堆,耗时长;工艺靠经验猜,不稳定……针对铸锻冶金热工行业面临的痛点,河北工业大学研究员、河北省数据驱动工业智能工程研究中心主任刘晶认为,人工智能技术可以有效支持铸锻冶金热工行业的定制化生产、故障诊断、工艺调优、数字孪生的构建以及数据的闭环管理,从而提高生产效率、降低成本并增强企业的竞争力。
“AI大模型以参数数量庞大、训练数据量大、计算资源需求高等为特点。”中国移动河北分公司专家杨志华表示,下一步,工业领域AI大模型发展趋势将以通用大模型为底座,构筑行业大模型,并根据工业场景细分垂直大模型,将在设备预测性维护、产品质量回溯、生产能耗管理等方向得到广泛应用。
冶金工业规划研究院项目总监、高级工程师刘璐新认为,AI大模型在钢铁企业生产计划与调度、原材料管理、质量控制、能源管理、设备维护与故障预测及供应链优化方面具有良好的应用前景。在刘璐新看来,若将AI大模型深度应用于钢铁行业,还应同时考虑并解决数据的真实性、模型的专业度及可靠度、模型响应的时效性、人才储备以及数据安全性等问题。
这次入企对接活动,让普阳钢铁信息化部部长牛现利收获满满。在他看来,研讨会上专家们分享数字化转型经验以及方案,对普阳钢铁而言都是宝贵的经验,指引着企业加快数字化转型步伐。本次活动中,他们与多家企业建立了合作关系,为后续的业务拓展和资源共享打下了坚实的基础。
钢铁是河北省的支柱产业,数字化转型是提升钢铁产业核心竞争力的重要手段。联盟入企活动是河北省钢铁行业数字化转型联盟开展的系列活动之一。联盟本年度将开展6次入企对接活动,普阳钢铁站是第一站。
河北省工业和信息化厅相关负责人表示,他们将立足河北钢铁行业丰富的应用场景,推动人工智能全方位、深层次赋能钢铁行业高质量发展。支持联盟聚焦难点重点问题,开展一对一入企服务,提供有针对性的数字化转型解决方案。建立具有河北钢铁特色的数字化转型标准体系、评价体系,为钢铁行业高质量发展提供新动能、新优势。
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓