极速部署个人计算机 DeepSeek-R1 推理模型

引言

2025的春节,国内外的科技圈子,甚至全民热话,都是深度求索的 DeepSeek-R1 模型。

当在家里的大舅哥突然拿出手机,给我播放了“美国决定全面严格审查 DeepSeek”和“中国科技公司 DeepSeek 遭国外有组织的进行大规模 DDoS 攻击”的新闻,并问我 DeepSeek 是个什么东西时,我意识到深度求索的 DeepSeek-R1 模型已成为中国科技历史上的一笔浓墨重彩的里程碑事件。

DeepSeek 主要解决了什么问题?

DeepSeek-R1 就是个啥都懂的国产AI大脑,既能看文字图片又能听声音,还能自己琢磨事儿不犯原则性错误。最牛的是它不用超级电脑,千把块的破手机就能跑,从帮医生搞研究到帮老外翻译方言全都能干,直接让中国AI技术和欧美掰手腕了。

从腊月二十九到大年初一,三天时间我尽可能全面、仔细的盘点和研究了一遍 DeepSeek-R1 模型,本篇就简明扼要的给大家来一篇个人计算机快速部署 DeepSeek-R1 推理模型的教程,网络好的话十分钟搞定~

前期准备

本次演示,使用了以下基础环境:

电脑:Mac M1 16GB(如是 Win/Linux 和 N/A 卡,也可以照搬)

部署运行框架:Ollama

部署模型:DeepSeek-R1-7b/8b

前端展示:Open-Web

关于 DeepSeek-R1 和 DeepSeek-R1-7b、DeepSeek-R1-8b 的区别,简单来说就是:

    1. DeepSeek-R1:基础款大模型,参数巨多(比如千亿级),像全能学霸,但需要高性能服务器才能跑。
    1. -7B/-8B:砍掉参数的轻量版(70亿/80亿参数),相当于“重点班特供版”,手机/普通电脑都能用,虽然没原版聪明但更接地气。
    1. 核心区别:大模型干复杂活(比如搞科研),小模型做日常事(比如手机翻译),就像电脑和充电宝的关系——能力不同,但都挂着DeepSeek的牌子。

部署框架 Ollama 安装

  1. 1. 访问官网下载对应系统的安装包:https://ollama.com/download

  1. 2. 解压缩 Zip 包,安装 Ollama

  2. 3. 运行 Ollama 后,在置顶工具栏会出现 Ollama 的 Logo 图标

下载运行 DeepSeek-R1-7b/8b 模型

  1. 1. 访问 Ollama 的 DeepSeek-R1 依赖库地址:https://ollama.com/library/deepseek-r1

  2. 2. 选择 Tag:7b 或者 8b

  3. 3. 复制 Ollama 运行 DeepSeek-R1-7b/8b 的命令

  4. 4. 在终端命令行窗口执行复制的命令

  5. 这里下载速度与网络环境有很大关系,尽可能用一个稳定的网络环境下载运行

  6. 5. 校验模型是否部署成功

安装 Open-Web 可视化展示项目

只用命令行窗口进行沟通不太美观,我们引入一个可视化展示项目来完成前端展示。

Open-Web 可视化工具是一款开源的大模型前端可视化展示项目。

项目地址:https://github.com/open-webui/open-webui

提供了使用 Pip 安装和 Docker 运行安装的两种方案,这里为了避免环境问题导致的各种错误,建议使用 Docker 运行和部署该项目。

本篇不做 Docker 安装部署的介绍,可至 DockerHub 官网(https://www.docker.com)下载

  1. 1. 访问项目,在 Readme 中有详细介绍

  2. 2. 我们在上一步已安装部署好 Ollama 框架,故此直接选择第一行命令即可:```
    docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

      
    
    ![](https://i-blog.csdnimg.cn/img_convert/299b4aa71fe8555e7129c91f47901e41.png)
    
    
  3. 3. 构建 Open-Web 容器后访问 3000 端口即可开始玩耍(依据电脑配置,可能初次打开速度会比较慢)

以我当前硬件配置运行 8b,Token 生成速度为5-6Token/s,速度还是可以的。

小结

折腾三天就为这一刻——打开浏览器,看着自家电脑跑起DeepSeek-R1,这感觉就像用五菱宏光飙出了法拉利的速度!从装Ollama到拉取模型,再到用Open-Web搞出可视化界面,全程就跟拼乐高似的咔咔两下搞定。

别看7B/8B是"青春版",实测让它写代码能出活、翻译方言不嘴瓢,甚至还能一本正经跟你讨论量子力学(虽然八成是现学现卖)。最绝的是,这玩意连我那台吃灰三年的老笔记本都能带得动,真·科技下乡典范。

最后说句大实话:十年前咱还在羡慕老外的AI玩具,现在DeepSeek-R1这种"国货之光"都能在家随便折腾了。赶紧动手试试,保准你大年初二就能在家族群里当一回"赛博显眼包"!

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值