大模型应用全景:主要领域与未来趋势,非常详细收藏这一篇就够

大模型是一种机器学习中的模型,它通常用于处理大规模的数据集和复杂的任务。大模型因其出色的性能和表现而备受关注。本文将讨论大模型在哪些领域应用最广泛。

一. [自然语言处理](NLP)

是一门研究人类语言与计算机之间交互的领域,旨在使计算机能够理解、解析、生成和处理自然语言。NLP结合了计算机科学、人工智能、语言学和认知科学等多个学科的知识,旨在构建能够理解和处理人类语言的智能系统。NLP的主要任务包括:

语言理解:这是NLP的核心任务之一,旨在使计算机能够理解人类语言的含义。语言理解的任务包括词法分析、句法分析、语义分析和语篇分析等。词法分析涉及将句子分解为单词或词组,句法分析涉及确定单词之间的语法关系,语义分析涉及理解句子的意义,而语篇分析涉及理解句子在上下文中的含义。

信息抽取:信息抽取旨在从文本中提取出结构化的信息。这包括实体识别(识别文本中的人名、地名、组织机构等实体)、关系抽取(识别实体之间的关系)和事件抽取(识别文本中发生的事件)等任务。

机器翻译:机器翻译旨在将一种语言的文本自动翻译成另一种语言。这是一个复杂的任务,涉及到词义的理解、语法的转换和上下文的处理等。

问答系统:问答系统旨在回答用户提出的自然语言问题。这包括基于检索的问答系统(根据预定义的知识库或文档进行答案检索)和基于推理的问答系统(通过推理和推断生成答案)。

文本生成:文本生成旨在使用计算机生成自然语言文本。这包括自动摘要(从大量文本中生成简洁的摘要)、文本生成(生成自然语言描述的图像或数据)和对话系统(生成自然语言对话)等任务。

在这里插入图片描述

二.[计算机视觉](CV)

它涉及使用计算机算法和技术来处理、分析和理解图像和视频数据。计算机视觉的目标是使计算机能够模拟人类视觉系统的功能,包括感知、理解和解释图像和视频。它可以应用于各种领域,如医学影像分析、自动驾驶、安全监控、人脸识别、图像搜索和机器人导航等。

计算机视觉的主要任务包括图像处理、特征提取、目标检测和识别、图像分割和场景理解等。图像处理涉及对图像进行预处理和增强,以提高后续任务的准确性和效果。特征提取是从图像中提取有用的信息和特征,如边缘、纹理和颜色等。目标检测和识别是识别图像中的特定对象或物体,并将其分类为预定义的类别。图像分割是将图像分割成不同的区域或对象,以便更好地理解图像的结构和内容。场景理解是对整个图像或视频进行高级理解和推理,以获得更深入的信息和意义。

图片

三.[语音识别]

它是自然语言处理(NLP)领域的一个重要分支,被广泛应用于语音助手、语音识别软件、语音转换等领域。语音识别的过程可以分为以下几个步骤:

音频预处理:采集到的语音信号可能包含噪声、回声等干扰因素,需要进行预处理来提高识别的准确性。常见的预处理方法包括降噪、回声消除、语音增强等。

特征提取:在语音信号预处理后,需要将其转换为计算机可以处理的特征表示。常用的特征提取方法包括短时能量、梅尔频率倒谱系数(MFCC)、线性预测编码(LPC)等。

声学模型训练:声学模型是语音识别的核心组成部分,它用于将特征表示映射到语音单元(如音素)上。声学模型可以通过机器学习算法进行训练,常用的算法包括隐马尔可夫模型(HMM)、深度神经网络(DNN)等。

语言模型训练:语言模型用于对识别结果进行语言上下文的校正,提高识别的准确性。语言模型可以通过统计语言模型、神经网络语言模型等方法进行训练。

解码和后处理:在训练好的声学模型和语言模型的基础上,可以使用解码算法对特征表示进行解码,得到最终的文本结果。解码算法常用的有动态时间规整(DTW)、维特比算法等。此外,还可以进行后处理,如拼写纠错、语法纠错等。

图片

四.[推荐系统]

推荐系统是一个需要大量数据处理的任务。大模型可以通过分析大量数据来提供更加精准的个性化推荐,包括电影、书籍、音乐等方面的内容。这种模型通常基于用户行为和历史数据来预测用户的兴趣,为用户提供更优质的推荐服务。

图片

五. 金融行业

金融行业需要处理大量的数据,跟踪[股票价格]、预测市场趋势等。大模型可以通过分析大规模的金融数据来检测市场动态,以及预测股票价格波动等。这种模型可以提供更加准确的预测结果,助力投资人做出更好的决策。

图片

大模型的应用主要集中在自然语言处理、计算机视觉、语音识别、推荐系统和金融行业等方面。随着大模型技术的不断发展和普及,这些领域的应用也将不断扩大。大模型不仅能够提供更加准确的结果,而且还能够极大地提高数据处理的效率,对于许多行业具有重要的意义。

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值