研究显示RAG框架在处理政务查询时,可支援更复杂的问题,提供准确度高的答案,而所需的时间、算力和成本亦远低于增量预训练和微调方法。
通用大语言模型能否直接应用于政务服务?
近年,类似于ChatGPT的大语言模型(Large Language Model,LLM)在全球迅速普及,展示出巨大的应用潜力。通过海量数据的训练,这些模型能够生成连贯且语义合理的文本,并具有卓越的问答能力。在政务服务领域,公众一般通过政府官网、移动应用查询政策法规、办事流程等信息,或者前往政务服务大厅求助。传统的政务服务主要依赖人工窗口服务和电话咨询,服务效率和响应速度往往受到限制,尤其是在遇到复杂问题或需要长时间排队等待时,公众满意度往往较低。随着技术的发展,特别是大语言模型的出现,政务服务逐渐迈进智能化、自动化。结合大语言模型的对话式咨询服务更为高效,能显著提升公众体验。
尽管大语言模型在处理常规问题时表现优异,但在涉及政策法规等专业领域时,仍面临诸多挑战。LLM的训练数据主要来源于互联网的公开内容,缺乏深入专业知识,可能导致生成不准确或不符合实际情况的回答。在某些特定场景下,模型可能会出现“幻觉”现象,即自信地提供错误信息。这种问题对普通用户来说通常难以识别,因为他们未必具备相关领域的专业知识。此外,政务政策经常更新变化,如果大语言模型未能及时获取最新的政策信息,其回答可能会与当前政策相冲突。由此可见,为提高政务AI系统的可靠性,除了确保回答的准确性外,还需加强其可解释性,以帮助用户理解每个回答的依据,此举亦有助提升系统的透明度和信任度。
RAG在政务服务中的应用特点
为了将大语言模型更好地应用于政务服务等场景,检索增强生成(Retrieval-Augmented Generation,RAG)框架应运而生。RAG技术通过两个步骤优化答案生成:首先,检索与用户问题相关的文档或文本片段;其次,利用LLM基于这些检索结果生成解答。引入RAG解决了当前政务服务中的一些问题,并表现出一定的优势【注1】。
首先,RAG通过集成外部知识库,确保模型生成的答案基于最新且权威的政策法规文本,大幅提升回答的准确性。其次,RAG支持更为复杂的查询方式,能够处理多层次和多维度的问题,不依赖单一的关键词匹配。通过结合检索结果与生成内容,RAG不仅提高了信息的准确度,还增强了用户对AI系统的信任度。这样,用户可清晰地看到每个回答背后的依据,减少了幻觉现象带来的困扰。此外,RAG技术的应用大幅降低成本和算力消耗。与增量预训练(Incremental Pre-training)和微调(Fine-tuning)相比,RAG无需重新训练大型模型,而是通过外部数据源的检索与补充来提升生成质量。因此,RAG框架在构建政务问答系统时所需的时间、算力和成本远低于传统的增量预训练和微调方法。
基础模型、微调模型与RAG框架:哪个最出色?
为了进一步评估RAG框架在政务法律领域的效果,笔者通过语义规则评分和事实一致性评分的对比分析,探讨基础模型、微调模型与RAG框架在生成内容质量及准确性方面的差异。研究结果显示,微调模型在语义评分方面表现最佳,全因其回答的语言风格和用词更接近标准答案。然而,微调模型存在一个显明问题,其“幻觉”现象较基础模型更为严重,生成的回答常包含许多与事实不符的内容,影响实际应用的可靠性。与之相比,基础模型生成的回答较为简洁,信息量相对较少。在处理复杂问题时,能力有限,应对高精度任务时表现欠佳。RAG框架则有效缓解幻觉现象,生成的回答中矛盾点明显少于微调模型,并且提供更多准确的信息,事实一致性较强。RAG框架在确保准确性和一致性的同时,能够有效减少幻觉现象,特别适用于需要外部知识支持的复杂任务,如政务咨询和分析。
在成本方面,经综合分析性能与资源消耗后发现,微调模型的成本是RAG框架的五倍,而RAG框架的成本则与基础模型相近。RAG框架在确保生成质量的同时,亦能显著降低成本,是效率与成本之间的理想选择。更关键的是,对于政府和企业而言,数据安全至关重要。RAG框架可通过完全私有化部署的方式应用,无需将敏感内部数据上传至第三方平台,有效降低数据泄露的风险【注2】。
政务服务的未来:从自动化到个性化
现时,RAG技术的政务问答助手,能够有效应对传统政务服务中的信息滞后、检索低效及人工干预等问题。随着技术持续进步,RAG系统预计在更广泛的应用领域上进一步扩展其功能,提供更加个性化的政务服务,例如智能内容推荐和数字人助手。这不仅有助于实现低延迟的语音交互,还能依据用户需求提供定制化的政务服务体验,让服务变得更个性化及精准。
注1:《智慧政务新篇章:AI助力政务服务创新》专题报告https://fwik3jehaxr.feishu.cn/file/FFCjbsGLzoiHuOxKcTPcNqn1nMb
注2:《智慧政务新篇章:AI助力政务服务创新》专题报告https://fwik3jehaxr.feishu.cn/file/FFCjbsGLzoiHuOxKcTPcNqn1nMb
在大模型时代,我们如何有效的去学习大模型?
现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家_。
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓