大模型在量化金融领域的应用:LLMagent打造交易系统(FINCON)实战!

看了一篇关于用LLM agent 建立交易和风控系统的文章,这篇文章是今年NIPS上的一篇文章:

其实文章的亮点在于risk management component里面,怎么针对manager agent 作出的决策计算P&L 或者 CVaR 来对决策好坏进行策略调整。总体架构如下:

核心思想在于有多个不同agents 会每天或者实时抓取相关的股票新闻,财报信息,股价信息,研报等信息,进行对股票进行分析决策,每个agent 会负责单独的任务,比如agent-0 负责研报的分析,agent-1 负责股价的分析,agent-2 负责财报或者实时新闻的分析等等,然后这类不同的agent会把自己的分析结果传给manager agent进行汇总分析,然后manager agent 会根据各个analyst agent的分析结果对各个股票进行买入排序或者买入或者卖出的决策判断,然后把需要买入的股票进行汇总,用mean-variance optimization的算法进行持仓配比预测,然后输出交易信号让交易系统完成。而risk management component 会根据manager agent决策结果进行评估,会对一段时间的P&L以及 CVaR的风险数据进行计算从而对manager agent的决策进行反馈,manager agent 会根据risk manager agent的反馈及时调整自己的策略。

其实问题的关键在于如何训练出这个一个风险评估模型

具体算法如下:

具体来说用历史数据进行回测训练,会对不同的交易和策略轨迹H_{k-1} 和 H_{k} 进行比较评估,从而模型会不同的反思,而risk management component会根据得到的P&L 或者风险参数进行prompt 参数的更改,比如说比较简单的就是对决策的历史波动率threshold进行调整去让manager agent 根据threshold进行决策调整等等。但是具体作者没有开源代码,或者代码还没上传,之后代码等作者上传了需要对代码进行具体解析才能知道这里作者具体是怎么做的:https://github.com/The-FinAI/FinCon

看了下回测效果这么强吗?

赶快开源吧!!!

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值