核心提示
随着自然语言处理、机器学习、深度学习等AI技术的不断演进, AI在医疗领域的应用越来越广泛,包括病理研究、药物研发、基因检测、疾病筛查、辅助诊断、影像分析、精准医疗等所有医疗环节。AI能力的不断提升,助力医疗行业处理和解决大量非结构化数据,实现医疗水平提升、增加医疗服务可及性以及降低医疗成本。
近期,DeepSeek通用大模型横空出世,大幅降低训练成本,同时开源模式能够实现本地化部署,更好地保障数据隐私及安全性,更加速推动了医械企业及医疗机构拥抱AI。
如今在医疗领域,AI大模型的应用可谓百花齐放,覆盖了药物研发、专病专科、患者问诊、医学影像分析、病例文本处理、辅助决策等多个关键场景,不到一年光景,AI大模型以超摩尔定律速度迅猛急奔,极大地推动了整个产业效率和质量的提升。
特别是近期,从2024年12月迈瑞医疗推出启元重症大模型,到2月基于华为DCS AI解决方案的瑞智病理大模型正式发布等等,越来越多的医疗垂类大模型纷纷涌现。
本报告将分为六大部分,聚焦医疗垂类AI大模型,对所涉及的医疗垂类AI大模型行业内涵、现状、驱动因素、产业链情况及发展前景等内容展开梳理分析。在当前市场发展情形下,有哪些方向值得市场关注?相关企业发展情况如何?从技术与商业化的角度,如何加速落地?什么样的企业会脱颖而出?敬请关注连载。
目 录
一、行业概况
1.1 定义与分类
1.2 发展历程
二、市场现状分析
2.1 市场规模与增速
2.2 市场驱动因素
2.3 竞争格局
三、核心应用场景与商业化进展
3.1 主要应用场景
3.2 商业化路径
四、行业挑战与机遇
五、投资机会分析
5.1 细分领域机会
5.2 政策与资本红利
5.3 长期价值赛道
六、未来趋势展望
▍一.行业概况
1.1 定义与分类
医疗垂类AI大模型(Medical Vertical Large Language Model,简称Medical Vertical LLM)是专门针对医疗领域特定需求,开发、设计和训练的人工智能大语言模型,通过海量医疗数据,如医学影像、电子病历、基因组数据等进行预训练,具备多模态信息处理能力,应用于疾病诊断、药物研发、个性化治疗、健康管理等场景。
这类模型通过对海量医学知识资源的深度训练,涵盖临床诊疗指南、医学学术文献、电子健康档案、基因组数据、药物相互作用数据库以及患者随访记录等,具备在多种医疗场景中提供智能支持的能力。
这些场景包括疾病诊断辅助、药物研发加速、患者健康管理优化、医学影像智能分析以及医疗资源调度等。
与通用大模型相比,医疗垂类大模型最大优势在于,对医疗垂直领域专业知识深度挖掘和高度场景化的应用能力。例如,它不仅能准确解析复杂的医学术语,还能结合患者具体病史和影像数据生成个性化诊疗建议。这种特性使其成为推动医疗行业智能化、数字化转型、提升诊疗效率和质量的重要技术支柱。
医疗垂类大模型的应用潜力,还体现在跨学科融合能力。例如,在结合自然语言处理、计算机视觉和基因组学的基础上,能够实现从文本数据解读到影像分析再到基因序列预测的全链条支持。这种多模态特性使其在解决复杂医疗问题时表现出显著的灵活性和高效性。
根据功能,医疗垂类大模型可分为:
-
药物发现模型:加速新药研发流程;
-
疾病诊断模型:辅助影像识别与病理分析;
-
个性化治疗模型:基于患者数据定制治疗方案。
根据模态,医疗垂类大模型可分为:
-
图学习大模型(LGMs):可用于预测蛋白质结构、 分析基因组学及设计药物,助力制药领域的药物研发和生产工艺提升;
-
语言条件多智能体大模型 (LLMMs):可实现远程诊疗、智能导诊和手术机器人,助力医疗器械领域的产品设计和智能化网络升级;
-
多模态大模型(LMMs):可用于识别医学数据并挖掘数据价值,助力商业领域分析健康大数据,构建信息化平台;
-
大型语言模型(LLMs):可用于回答医学问题、提供医学建议;
-
视觉大模型(LVMs)及视觉-语言大模型(VLMs):可用于识别医学图像、生成图像注释,三类模型均可提供AI辅助诊断、AI 辅助治疗的医疗服务。
国外医疗垂类大模型类别和实例
资料来源:中国信通研究院,颐通研究院
1.2 发展历程
医疗垂类大模型的技术发展,经历了几个显著发展阶段,每一阶段都反映了从通用性向专业化、从单模态向多模态融合的演进趋势。
-
早期阶段(1967-2000年):以规则驱动型AI为主,应用场景有限;
-
数字化转型(2001-2012年):电子病历普及推动数据积累;
-
AI融合阶段(2013-2017年):深度学习技术突破,医学影像分析初显成效。
-
大模型时代(2018年-至今):Transformer架构推动参数规模跃升,多模态能力显著增强。
在大模型时代,首先是通用大模型阶段。这一阶段始于通用大模型,如GPT-4、PaLM的广泛应用,研究人员和企业尝试将其直接用于医疗场景。这些模型在自然语言理解和生成方面表现出色,但由于缺乏针对医疗领域的专门优化,在处理专业术语和医学逻辑时存在明显不足。
例如,通用模型可能无法准确区分“急性胰腺炎”和“慢性胰腺炎”的临床表现和治疗路径,甚至可能生成不切实际的建议,这限制了在高风险医疗环境中的实用性。
其次是领域微调模型阶段。为克服通用模型的局限,开始开发基于通用架构的领域微调模型,如BioGPT和Med-PaLM。这些模型通过在专业医学语料库,如PubMed文献、临床试验数据库、医学教科书等上的二次训练,显著提升了对医疗知识的覆盖率和推理准确性。
以Med-PaLM为例,2023年的测试表明,其在多项医学问答任务中的表现,已接近甚至超过人类专家水平,尤其是在疾病鉴别诊断、治疗方案推荐以及病例分析方面,展现出强劲能力。这一阶段标志着AI从通用工具向专业工具的转型。
最后是全栈医疗大模型阶段。随着技术的进一步突破,全栈医疗大模型,如DeepMind的AlphaFold、IBM Watson Health,讯飞医疗星火大模型逐渐崭露头角。这类模型从底层架构设计上就针对医疗场景进行了深度优化,支持多模态数据的融合处理,包括文本、医学影像、基因组序列、生物传感器数据等,提供从数据输入到决策输出的端到端解决方案。
例如,AlphaFold通过预测蛋白质的三维结构,极大加速了药物靶点发现的过程,其成果已被广泛应用于新冠病毒疫苗研发;而IBM Watson Health则通过整合影像数据和基因组信息,为癌症患者的个性化治疗提供了全新路径。这一阶段的技术突破不仅提升了模型的性能,也拓展了应用边界。
END
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓