Qwen2.5-Omni 是一个端到端的多模态模型,旨在感知各种模态,包括文本、图像、音频和视频,同时以流式方式生成文本和自然语音响应。
📊 技术报告:
2025.03.26_https://arxiv.org/abs/2503.20215
💻 官方代码:
https://github.com/QwenLM/Qwen2.5-Omni
🚀 立即体验:
https://huggingface.co/spaces/Qwen/Qwen2.5-Omni-7B-Demo
🛠️ 技术构架
Qwen2.5-Omni 采用 Thinker-Talker 架构。
-
Thinker :充当大脑,处理和理解多模态输入以生成结构化表示和文本。
-
Talker :充当语音生成器,将结构化数据转换为流畅、自然的语音输出。
因此,整个架构作为一个有凝聚力的单一模型运行,支持端到端的训练和推理。
TMRoPE:时间对齐故障排除
Qwen 2.5 Omni 7B 最重要的创新之一是时间对齐多模态 RoPE (TMRoPE) 机制。这一突破解决了多模态AI问题,即同步来自各种来源的时间数据。当同时处理视频和音频时,模型需要了解视觉事件如何与该声音或语言保持一致。例如,将一个人的嘴唇运动与他们所说的话相匹配需要精确的时间对齐。TMRoPE 为实现这种同步提供了一个复杂的框架,使模型能够随着时间的推移建立对多模态输入的一致理解。
专为实时交互而设计
Qwen 2.5 Omni 7B 在构建时充分考虑了实时应用程序。此架构支持低延迟流式处理,支持分块输入处理并提供即时输出生成。这使其成为需要响应式交互的应用程序的理想选择,例如语音助手、实时视频分析或实时翻译服务。
🏆 性能表现
将Qwen2.5-Omni与其他 AI 模型进行比较,包括 Gemini 1.5 Pro、Human 和各种单模态模型。在需要跨模态推理的任务OmniBench中,它实现了最先进的性能,超越了许多现有模型。在需要集成多种模态的任务中,例如 OmniBench,Qwen2.5-Omni 实现了最先进的性能。
单模态任务中,它在语音识别 (Common Voice)、翻译 (CoVoST2)、音频理解 (MMAU)、图像推理 (MMMU、MMStar)、视频理解 (MVBench) 和语音生成 (Seed-tts-eval 和 Subjective naturalness) 等领域表现出色。
🧠 结论
Qwen2.5-Omni 提供先进的多模态交互,将高效处理与实时自然响应相结合。通过将视觉、听觉、文本和语音结合到一个模型中,Qwen 2.5 Omni打破了各种AI功能之间的传统界限。这代表着在创建AI系统方面向前迈出了重要一步,以更自然、更直观的方式进行交互。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓