一、什么是大模型?
当我们提及大模型时,通常指的是大语言模型(Large Language Model,简称LLM),即文字问答模型,其典型代表便是OpenAI的GPT系列。然而,随着技术的日新月异,大模型已经不单单局限于自然语言处理(Natural Language Processing)领域的发光发热,而是逐渐渗透到了其他多个领域。
1、初学者学习大模型难吗?
对于初学者来说,学习大型模型确实具有一定的难度,但并非不可能。关键在于是否有扎实的基础知识、持续的学习态度和实际的动手能力。通过逐步学习和实践,初学者可以逐步掌握大型模型的相关知识和技能。
那么初学者学习大模型“难”的点在哪?
理论知识:大型模型通常基于复杂的数学和统计学原理,需要一定的理论基础。
计算资源:大型模型训练需要高性能的计算资源,这对初学者来说可能难以获得。
编程技能:实现大型模型需要熟练的编程技能,尤其是在使用深度学习框架时。
数据管理:处理和准备用于训练大型模型的大量数据是一个挑战。
调试和优化:大型模型的调试和性能优化需要经验和直觉。
概念理解:理解模型的工作原理和内部机制可能会很困难,特别是对于复杂的网络结构。
然而,随着在线教育资源的丰富和开源软件的普及,初学者可以通过以下方式逐步学习:
基础学习:首先掌握机器学习和深度学习的基础知识。
逐步深入:从简单的模型开始,逐步学习更复杂的模型。
实践操作:通过实验和项目来应用所学知识。
利用资源:利用在线课程、论坛和开源项目来学习和解决问题。
社区支持:加入学习小组和社区,与他人交流和合作。
虽然学习大型模型有难度,但通过持续的学习和实践,初学者可以逐步克服这些挑战。
2,学习大模型有什么好处?
学习大型模型可以为个人带来多方面的好处,尤其是在职业生涯和学术研究方面。
以下是一些主要的好处:
就业机会:掌握大型模型技能的人在人工智能、数据分析、软件开发等领域有更多的就业机会。
解决复杂问题:大型模型能够处理和分析大量复杂数据,帮助解决现实世界中的复杂问题,如疾病诊断、气候变化预测等。
创新研究:在学术或工业研究环境中,大型模型是推动新技术和算法发展的关键工具。
跨学科应用:大型模型的知识可以应用于多个学科,如生物学、物理学、经济学等,促进跨学科的研究和合作。
提高效率:在工业和服务业中,大型模型可以自动化复杂的任务,提高生产效率和决策质量。
商业价值:大型模型可以帮助企业和组织从数据中提取有价值的信息,用于市场分析、客户服务、风险评估等。
个人成长:学习大型模型可以提升个人的技术能力和解决问题的能力,有助于个人职业成长和发展。
社会影响:大型模型的应用可以对社会产生积极影响,如通过改善医疗保健、教育、交通等领域。
持续学习:大型模型和深度学习是快速发展的领域,学习这些模型可以让人保持对最新技术趋势的了解。
创业机会:掌握大型模型技能的人可以创办基于人工智能技术的初创公司,开发创新产品和服务。
总之,学习大型模型不仅可以提升个人的技术能力,还可以为个人的职业发展、学术研究和社会贡献带来广阔的前景。
下面是我为大家准备的一份完整的学习大模型的资料,希望对你们有所帮助:
初学者AI大模型入门指南
第一章认识大模型
1.1 大规模语言模型基本概念
1.2 大规模语言模型发展历程
1.3 大规模语言模型构建流程
第二章大语言模型基础
2.1 Transformer模型
- 2.1.1 嵌入表示层
- 2.1.2 注意力层
- 2.1.3 前馈层
- 2.1.4 残差连接与层归一化
- 2.1.5 编码器和解码器结构
2.2 生成式预训练语言模型GPT
- 2.2.1 无监督预训练
- 2.2.2 有监督下游任务微调
- 2.2.3 基于HuggingFace的预训练语言模型实践
2.3 大语言模型结构
- 2.3.1 LLaMA的模型结构
- 2.3.2 注意力机制优化
第三章语言模型训练数据
3.1数据来源
- 3.1.1 通用数据
- 3.1.2 专业数据
3.2 数据处理
- 3.2.1 低质过滤
- 3.2.2 冗余去除
- 3.2.3 隐私消除
- 3.2.4 词元切分
3.3 数据景细向分析
- 3.3.1 数据规模影响
- 3.3.2 数据质量影响
- 3.3.3 数据多样性影响
3.4 开源数据集合
- 3.4.1 Pile
- 3.4.2 ROOTS
- 3.4.3 RefinedWeb
- 3.4.4 SlimPajama
第四章分布式训练
4.1 分布式训练概述
4.2 分布式训练并行策略
- 4.2.1 数据并行
- 4.2.2 模型并行
- 4.2.3 混合并行
- 4.2.4 计算设备内存优化
4.3 分布式训练的集群架构
- 4.3.1 高性能计算集群硬件组成
- 4.3.2 参数服务器架构
- 4.3.3 去中心化架构
4.4 Deepspeed实践
- 4.4.1 基础概念
- 4.4.2 LLaMA分布式训练实践
第五章有监督微调
5.1 提示学习和语境学习
- 5.1.1 提示学习
- 5.1.2 语境学习
5.2 高效模型微调
- 5.2.1 LORA
- 5.2.2 LORA的变体
5.3 模型上下交窗口扩展
- 5.3.1 具有外推能力的位置编码5.3.2 插值法
5.4 指令数据构建
- 5.4.1 手动构建指令
- 5.4.2 自动生成指令
- 5.4.3 开源指令数据集
5.5 Deepspeed-chat SFT实践
- 5.5.1 代码结构
- 5.5.2 数据预处理
- 5.5.3 自定义模型
- 5.5.4 模型训练
- 5.5.5 模型推理
第六章强化学习
6.1 基于人类反馈的强化学习
- 6.1.1 强化学习概述
- 6.1.2 强化学习与有监督学习的区别
- 6.1.3 基于人类反馈的强化学习流程
6.2 奖励模型
- 6.2.1 数据收集
- 6.2.2 模型训练
- 6.2.3 开源数据
6.3 近端策略优化
- 6.3.1 策略梯度
- 6.3.2 广义优势估计
- 6.3.3 近端策略优化算法
6.4 MOSS-RLHF实践
- 6.4.1 奖励模型训练
- 6.4.2 PPO微调
第七章大语言模型应用
7.1 推理规划
- 7.1.1 思维链提示(Chain-of-Thought Prompting)
- 7.1.2 由少至多提示(Least-to-Most Prompting)
7.2 综合应用框架
- 7.2.1 LangChain框架核心模块
- 7.2.2 知识库问答实践
7.3 智能代理
- 7.3.1 智能代理的组成
- 7.3.2 智能代理的应用实例
7.4 多模态大模型
- 7.4.1 模型架构
- 7.4.2 数据收集与训练策略
- 7.4.3 多模态能力示例
7.5 大语言模型推理优化
- 7.5.1 FastServe框架
- 7.5.2 VLLM推理框架实践
第八章大语言模型评估
8.1 模型评估概述
8.2 大语言模型评估体系
- 8.2.1 知识与能力
- 8.2.2 伦理与安全
- 8.2.3 垂直领域评估
8.3 大语言模型评估方法
- 8.3.1 评估指标
- 8.3.2 评估方法
8.4 大语言模型评估实践
- 8.4.1 基础模型评估
- 8.4.2 SFT/RL模型评估
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓