初学者学习大模型难吗?AI大模型新手指南:全方位知识点解析,助你快速入门!

一、什么是大模型?

当我们提及大模型时,通常指的是大语言模型(Large Language Model,简称LLM),即文字问答模型,其典型代表便是OpenAI的GPT系列。然而,随着技术的日新月异,大模型已经不单单局限于自然语言处理(Natural Language Processing)领域的发光发热,而是逐渐渗透到了其他多个领域。

1、初学者学习大模型难吗?

对于初学者来说,学习大型模型确实具有一定的难度,但并非不可能。关键在于是否有扎实的基础知识、持续的学习态度和实际的动手能力。通过逐步学习和实践,初学者可以逐步掌握大型模型的相关知识和技能。

那么初学者学习大模型“难”的点在哪?

理论知识:大型模型通常基于复杂的数学和统计学原理,需要一定的理论基础。

计算资源:大型模型训练需要高性能的计算资源,这对初学者来说可能难以获得。

编程技能:实现大型模型需要熟练的编程技能,尤其是在使用深度学习框架时。

数据管理:处理和准备用于训练大型模型的大量数据是一个挑战。

调试和优化:大型模型的调试和性能优化需要经验和直觉。

概念理解:理解模型的工作原理和内部机制可能会很困难,特别是对于复杂的网络结构。

然而,随着在线教育资源的丰富和开源软件的普及,初学者可以通过以下方式逐步学习:

基础学习:首先掌握机器学习和深度学习的基础知识。

逐步深入:从简单的模型开始,逐步学习更复杂的模型。

实践操作:通过实验和项目来应用所学知识。

利用资源:利用在线课程、论坛和开源项目来学习和解决问题。

社区支持:加入学习小组和社区,与他人交流和合作。

虽然学习大型模型有难度,但通过持续的学习和实践,初学者可以逐步克服这些挑战。

2,学习大模型有什么好处?

学习大型模型可以为个人带来多方面的好处,尤其是在职业生涯和学术研究方面。

以下是一些主要的好处:

就业机会:掌握大型模型技能的人在人工智能、数据分析、软件开发等领域有更多的就业机会。

解决复杂问题:大型模型能够处理和分析大量复杂数据,帮助解决现实世界中的复杂问题,如疾病诊断、气候变化预测等。

创新研究:在学术或工业研究环境中,大型模型是推动新技术和算法发展的关键工具。

跨学科应用:大型模型的知识可以应用于多个学科,如生物学、物理学、经济学等,促进跨学科的研究和合作。

提高效率:在工业和服务业中,大型模型可以自动化复杂的任务,提高生产效率和决策质量。

商业价值:大型模型可以帮助企业和组织从数据中提取有价值的信息,用于市场分析、客户服务、风险评估等。

个人成长:学习大型模型可以提升个人的技术能力和解决问题的能力,有助于个人职业成长和发展。

社会影响:大型模型的应用可以对社会产生积极影响,如通过改善医疗保健、教育、交通等领域。

持续学习:大型模型和深度学习是快速发展的领域,学习这些模型可以让人保持对最新技术趋势的了解。

创业机会:掌握大型模型技能的人可以创办基于人工智能技术的初创公司,开发创新产品和服务。

总之,学习大型模型不仅可以提升个人的技术能力,还可以为个人的职业发展、学术研究和社会贡献带来广阔的前景。

下面是我为大家准备的一份完整的学习大模型的资料,希望对你们有所帮助:

初学者AI大模型入门指南

第一章认识大模型
1.1 大规模语言模型基本概念
1.2 大规模语言模型发展历程
1.3 大规模语言模型构建流程

在这里插入图片描述

第二章大语言模型基础

2.1 Transformer模型

  • 2.1.1 嵌入表示层
  • 2.1.2 注意力层
  • 2.1.3 前馈层
  • 2.1.4 残差连接与层归一化
  • 2.1.5 编码器和解码器结构

2.2 生成式预训练语言模型GPT

  • 2.2.1 无监督预训练
  • 2.2.2 有监督下游任务微调
  • 2.2.3 基于HuggingFace的预训练语言模型实践

2.3 大语言模型结构

  • 2.3.1 LLaMA的模型结构
  • 2.3.2 注意力机制优化

在这里插入图片描述

第三章语言模型训练数据

3.1数据来源

  • 3.1.1 通用数据
  • 3.1.2 专业数据

3.2 数据处理

  • 3.2.1 低质过滤
  • 3.2.2 冗余去除
  • 3.2.3 隐私消除
  • 3.2.4 词元切分

3.3 数据景细向分析

  • 3.3.1 数据规模影响
  • 3.3.2 数据质量影响
  • 3.3.3 数据多样性影响

3.4 开源数据集合

  • 3.4.1 Pile
  • 3.4.2 ROOTS
  • 3.4.3 RefinedWeb
  • 3.4.4 SlimPajama
    在这里插入图片描述
第四章分布式训练

4.1 分布式训练概述

4.2 分布式训练并行策略

  • 4.2.1 数据并行
  • 4.2.2 模型并行
  • 4.2.3 混合并行
  • 4.2.4 计算设备内存优化

4.3 分布式训练的集群架构

  • 4.3.1 高性能计算集群硬件组成
  • 4.3.2 参数服务器架构
  • 4.3.3 去中心化架构

4.4 Deepspeed实践

  • 4.4.1 基础概念
  • 4.4.2 LLaMA分布式训练实践
    在这里插入图片描述
第五章有监督微调

5.1 提示学习和语境学习

  • 5.1.1 提示学习
  • 5.1.2 语境学习

5.2 高效模型微调

  • 5.2.1 LORA
  • 5.2.2 LORA的变体

5.3 模型上下交窗口扩展

  • 5.3.1 具有外推能力的位置编码5.3.2 插值法

5.4 指令数据构建

  • 5.4.1 手动构建指令
  • 5.4.2 自动生成指令
  • 5.4.3 开源指令数据集

5.5 Deepspeed-chat SFT实践

  • 5.5.1 代码结构
  • 5.5.2 数据预处理
  • 5.5.3 自定义模型
  • 5.5.4 模型训练
  • 5.5.5 模型推理
    在这里插入图片描述
第六章强化学习

6.1 基于人类反馈的强化学习

  • 6.1.1 强化学习概述
  • 6.1.2 强化学习与有监督学习的区别
  • 6.1.3 基于人类反馈的强化学习流程

6.2 奖励模型

  • 6.2.1 数据收集
  • 6.2.2 模型训练
  • 6.2.3 开源数据

6.3 近端策略优化

  • 6.3.1 策略梯度
  • 6.3.2 广义优势估计
  • 6.3.3 近端策略优化算法

6.4 MOSS-RLHF实践

  • 6.4.1 奖励模型训练
  • 6.4.2 PPO微调
    在这里插入图片描述
第七章大语言模型应用

7.1 推理规划

  • 7.1.1 思维链提示(Chain-of-Thought Prompting)
  • 7.1.2 由少至多提示(Least-to-Most Prompting)

7.2 综合应用框架

  • 7.2.1 LangChain框架核心模块
  • 7.2.2 知识库问答实践

7.3 智能代理

  • 7.3.1 智能代理的组成
  • 7.3.2 智能代理的应用实例

7.4 多模态大模型

  • 7.4.1 模型架构
  • 7.4.2 数据收集与训练策略
  • 7.4.3 多模态能力示例

7.5 大语言模型推理优化

  • 7.5.1 FastServe框架
  • 7.5.2 VLLM推理框架实践
    在这里插入图片描述
第八章大语言模型评估

8.1 模型评估概述

8.2 大语言模型评估体系

  • 8.2.1 知识与能力
  • 8.2.2 伦理与安全
  • 8.2.3 垂直领域评估

8.3 大语言模型评估方法

  • 8.3.1 评估指标
  • 8.3.2 评估方法

8.4 大语言模型评估实践

  • 8.4.1 基础模型评估
  • 8.4.2 SFT/RL模型评估
    在这里插入图片描述

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值