清华Hyper-RAG创新突破:超图建模高阶关系,助力DeepSeek/Qwen生成质量提升12.3%!

大模型在教育、金融和医学等多个领域引发了变革,但由于幻觉,可能引发不良后果,现有的RAG方法在处理复杂关系和高阶交互方面存在明显局限性,导致信息丢失、检索效率低下和处理复杂查询能力不足等问题,限制了在高风险领域(如医学诊断)中的应用。

数据中复杂相关性建模的示意图:a. 现实世界的实体空间,展示了数据集中存在的各种实体。b. 这些实体之间潜在的复杂相关性,包括低阶相关性(如成对相关性或自相关性)以及涉及三个或更多实体之间交互的高阶相关性。c. 使用圆圈表示实体之间的相关性,以可视化实体相关性。结构被建模为2-均匀超图,强调成对连接。另一个示例展示了三个和四个实体之间的相关性,分别用圆圈包围三个和四个实体。

为了解决LLMs的幻觉问题,清华&西安交大等提出了Hyper-RAG方法。该方法通过构建超图来全面捕捉数据中的成对(pairwise)和非成对(beyond-pairwise)关系,从而为LLMs提供更丰富的先验知识,减少幻觉。

具体来说,Hyper-RAG包括以下几个关键步骤:

  1. 知识提取:从原始数据集中提取实体、低阶(成对)关系和高阶(多实体)关系,并构建超图结构。超图利用超边(hyperedges)连接任意数量的节点,能够表示多实体之间的复杂关系。

  2. 知识索引:使用向量数据库存储实体的嵌入表示,以及超图数据库存储结构化信息,包括低阶和高阶关系。

  3. 知识检索与LLMs增强:在问答过程中,从用户问题中提取关键词,利用超图结构检索相关知识,并将其作为先验知识输入给LLMs,以生成更准确、更可靠的回答。

从原始语料库中提取实体和相关性的示意图:深棕色的方框表示实体,蓝色箭头表示实体之间的低阶相关性,红色箭头表示高阶相关性。黄色方框包含相应实体或其相关性的原始描述。

通过一系列实验验证了Hyper-RAG的有效性,使用了九个不同领域的数据集,包括医学、数学、农业、金融等,并选择了六个主流的LLMs进行测试:GLM-4-Air、Doubao-1.5-Pro、LLaMa-3.3-70B、Qwen-Plus、GPT-4o mini 、DeepSeek-V3。

  1. 性能提升:实验结果表明,Hyper-RAG平均提升了LLMs 12.3%的准确率,并且在复杂问题上表现更为稳定。与Graph RAG和Light RAG相比,Hyper-RAG分别额外提升了6.3%和6.0%的性能。

  1. 复杂问题处理:随着问题复杂度的增加,现有LLMs和RAG方法的性能显著下降,而Hyper-RAG能够保持稳定的性能水平。例如,在三阶段复杂问题上,Hyper-RAG相对于直接使用LLMs的性能提升达到了15.0%。

  1. 跨领域适应性:在九个不同领域的数据集上,Hyper-RAG平均性能提升了35.5%,尤其是在法律、农业和金融领域表现突出。

  1. 知识表示策略:通过对比不同的知识表示方法(仅使用原始数据、仅低阶关系、仅高阶关系等),实验发现同时使用低阶和高阶关系的Hyper-RAG表现最佳,证明了高阶关系在提升性能中的重要性。

  1. 效率分析:Hyper-RAG在保持高性能的同时,检索速度比Light RAG快两倍,并且性能提升了3.3%。此外,轻量级版本Hyper-RAG-Lite在检索速度上进一步提升,同时保持了较好的性能。

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值