上周和做程序员的朋友吃饭,他突然神秘兮兮地说:“知道现在 HR 追着跑的岗位是啥吗?AI 应用开发!我同事刚跳槽,薪资直接从 20k 跳到 45k,简历都没怎么改,就加了个‘精通大模型应用’的标签。” 抱着半信半疑的态度,我去 BOSS 直聘搜了一圈,好家伙,蚂蚁金服标出 30-60k 招 AI 应用开发,连岗位描述都没写清楚,却写着 “HC 多多,欢迎勾搭”—— 这哪是招人,分明是在撒钱!
一、AI 应用开发:薪资天花板被捅破的 “暴富风口”
1. 传统开发 vs AI 开发:薪资差出一个 “阶层”
-
Java 开发平均薪资:15-25k(北上广深)
-
AI 应用开发平均薪资:25-50k,资深岗位直接破百
▶ 某大厂 P8 级岗位标出 130k-160k,要求 “懂 Agent 与 MCP 生态”;
▶ 中小公司也不示弱,25k-45k 招 “大模型应用工程师”,比传统后端高 40%+。
2. 为什么这么贵?人才缺口大到 “离谱”
-
工信部数据:2025 年 AI 人才缺口将达 400 万,应用层开发人才占 70%;
-
场景爆发式需求:
✔ 电商要用 AI 做智能推荐,
✔ 医疗要用 AI 读片,
✔ 甚至连卖奶茶的都想搞个 “AI 点单机器人”—— 懂技术又懂业务的开发者,成了香饽饽。
真实案例:朋友公司招了个 95 后小哥,只会用 LangChain 搭简单问答机器人,月薪直接给了 30k,理由是:“他能让模型调用我们的库存系统,这就是核心竞争力。”
二、揭秘岗位真相:到底要干啥?
别被 “AI” 两个字吓退,拆解岗位要求后你会发现:这本质是 “传统开发 + AI 工具集成” 的跨界活。
1. 核心技能:“技术栈拼接术”
-
编程语言:Python/Java 是基础,会 C++ 加分(用于优化模型推理速度);
-
大模型工具:
✔ 必学:LangChain(构建 Agent)、LlamaIndex(RAG 检索)、Stable Diffusion(多模态开发);
✔ 加分项:MCP 标准(如高德地图 API 调用)、AutoGPT 自动化流程; -
传统后端能力:MySQL 优化、Redis 缓存、微服务架构,一个都不能少。
2. 典型工作场景:
-
场景 1:给电商平台做 “AI 客服”
▶ 用 Prompt Engineering 优化客服话术,
▶ 调用商品数据库 API 实现自动答疑,
▶ 用 Docker 部署到云端,确保同时接待 10 万 + 用户。 -
场景 2:帮车企开发 “智能车载助手”
▶ 集成 ChatGPT 做语音交互,
▶ 对接车辆传感器数据(如油耗、胎压),
▶ 用 TensorRT-LLM 优化模型,让响应速度低于 500ms。
一句话总结:你不需要从头训练模型(那是算法工程师的活),但要像 “技术翻译官” 一样,让大模型听懂业务需求,调用现有工具解决问题。
三、普通人如何入局?3 步走比科班生更快
1. 别啃论文!从 “抄作业” 开始
-
入门项目:
✔ 用 Hugging Face API 做一个 “AI 简历优化器”,对接招聘网站数据;
✔ 用 Stable Diffusion+Flask 搭建 “AI 头像生成器”,挂到淘宝卖; -
学习资源:
▶ 免费课程:DeepLearning.AI 的《ChatGPT Prompt Engineering》;
▶ 实战书:《LangChain 实战:从 0 到 1 搭建智能应用》。
2. 绑定垂直行业,成为 “稀缺复合型人才”
-
避开大厂内卷:聚焦传统行业数字化需求
✔ 制造业:AI 质检(用计算机视觉检测零件缺陷);
✔ 农业:AI 种植助手(调用气象数据 + 土壤传感器,指导施肥); -
案例参考:某团队给火锅店开发 “AI 配菜机器人”,用 NLP 解析用户忌口,调用库存 API 推荐菜品,项目落地后团队成员薪资普涨 50%。
3. 混圈子比闷头学更重要
-
技术社区:
✔ GitHub 标星超 10k 的 AI 应用项目(如 AutoGPT、BabyAGI), fork 下来改改就能写进简历;
✔ 参加 Kaggle 上的低代码 AI 竞赛(如用 ChatGPT 优化物流路径); -
人脉变现:
加入 “AI + 行业” 社群(如 “AI 医疗开发者联盟”),经常有传统企业老板直接发需求:“谁能做个 AI 读片工具?预算 20 万!”
四、未来 3 年:这个岗位会 “贬值” 吗?
1. 短期:薪资会继续涨,但门槛变高
-
2025 年前,企业愿意为 “稀缺性” 买单,但要求从 “会调用 API” 升级到 “懂模型微调”(如用 LoRA 调参优化垂直领域模型);
-
建议提前学:QLoRA 量化技术(减少模型显存占用)、模型压缩(让大模型跑在手机端)。
2. 长期:成为 “技术中台” 刚需
-
就像当年的云计算工程师,AI 应用开发会成为企业数字化标配 —— 每个公司都需要一个 “AI 接口人”,薪资可能趋于稳定,但需求永远存在。
关键提醒:别沉迷 “调参黑魔法”,业务理解能力才是核心竞争力。能把 “用户痛点” 翻译成 “技术方案” 的人,永远不愁没饭吃。
结语:与其焦虑 AI 取代人类,不如成为 “AI 的翻译官”
当很多人还在担心 “AI 抢饭碗” 时,聪明的开发者已经在靠 “教 AI 干活” 赚得盆满钵满。这个时代从不辜负 “跨界者”—— 如果你懂 Java,花 3 个月学 LangChain,就能从 20k 跳到 35k;如果你懂产品,花 6 个月学 Prompt Engineering,就能转型 AI 产品经理。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓