引言
本文来源于5月底参加的 #QECON深圳站上,来自蚂蚁集团的知识库专家关于「领域知识管理和 AI 问答」的分享。介绍了从传统 RAG 到知识图谱再到 Search Agent,一步一步把 RAG 的正确率从 60% 最终提升到 95%。收获非常大,强烈推荐!
知识库问答业务场景
专家分享的 AI 助手是基于企业内研发知识库,主要目标是降低研发参与咨询工单带来的人力成本消耗,月度工单量数万条。
传统 RAG 优化
要做知识库问答,离不开 RAG。与所有人一样,一切从传统 RAG 方案起步。
传统的 RAG 包括:
-
离线文档处理:文档解析、长文档分片、文本/段落/块等多级别摘要、Embedding 入库
-
在线检索生成:前置意图识别/问题改写/工具调用、多路检索和 Rerank 排序、Qwen14B 生成答案
经过优化后,传统 RAG 方案做到的成功率:
-
文档召回率 80%+
-
最终生成正确率 60%+
由于我做的也是企业内 RAG 问答,同样的经过一点一点优化、经过反反复复的评测,最终成功率与ta分享的差不多,因此看到这个数字深有感触,也加大了对ta经验的信心
传统 RAG 远远不够
为什么传统 RAG 远远不够用?
因为传统 RAG 无法解决复杂的问题场景:
-
传统 RAG 在跨文档召回时的成功率低
-
用户的需求日益复杂,需要多篇文档甚至结合工具调用才能解答
-
知识资产无组织,检索低效,难以发挥出应有价值
解决方案:知识图谱+DeepSearch
-
使用轻量化 LightRAG 方案,构建知识图谱,解决语义理解对齐和知识跨文档的难题
-
使用 DeepSearch 迭代式搜索方案,综合多源、多轮搜索结果,利用大模型的推理能力,提高问答的准确性
知识图谱
在知识图谱的构建上实现:
-
动态实体抽取: 融合领域术语库与LLM,实现混合实体识别技术,确保知识图谱的实时性和准确性。
-
关系标签自动抽取:基于用户行为反馈优化标签权重,支持增量更新。
基于知识图谱的检索上实现:
-
local检索: 快速定位相关实体子图,提升召回率。
-
global检索: 利用关系标签驱动的语义扩展,解决跨文档关联问题。
最终结合 local、global 以及传统 RAG 优化方案,实现召回率达到 95%+
DeepSearch Agent
优化1:结合迭代式搜索框架的检索Agent
在 DeepSearch 方案中,把传统 RAG 检索(含稀疏检索、稠密检索)、local 图谱检索、global 图谱检索、代码检索等,都作为一个检索工具,交给大模型来选择。
大模型基于推理能力,结合每一轮的检索结果,判断是否需要以及使用什么工具进行下一轮检索。
优化2:结合深度定制工具的领域助手agent
-
query理解: 通过让模型自主决定调用哪些工具解决问题。
-
上下文重写: 利用上下文信息进行查询重写,提升查询与知识标签的匹配度,增强理解能力。
-
工具调用: 引入工具调用机制,支持更复杂的操作流程,提高解决问题的能力。
-
优化匹配: 利用领域图谱进行改写;有效解决口语化表达与专业文档之间的匹配难题,显著提升匹配效率和准确性。
业务落地效果
复杂问题解决率显著提高,平均响应时间大幅缩短,人工工单量降低10%。
业务落地覆盖前后端等各技术栈平台,证明方案的泛化性。
我的感想
由于一直关注 RAG 技术的发展,在我印象中有公开分享过 RAG 技术和经验,且达到很高准确率的案例,只有 Linkedin 分享的基于 Knowledge Graph 的召回率达到 85%+,后来就有了 Microsoft 公开的火爆一时的 GraphRAG 方案。
而这次来自蚂蚁专家的分享,是另一个达到 95% 正确率级别的真实案例,同样基于 GraphRAG。
虽然 GraphRAG 方案复杂,token 成本高,但因为它的正确率高,依然值得一试。
最后,强如 GraphRAG 也始终是搜索工具,要想解决复杂的真实用户诉求,具备推理能力和工具调用的 Agent,才是终极答案吧。
LightRAG 资料: https://github.com/HKUDS/LightRAG
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】