从监督到偏好:SFT与DPO微调方法详解

SFT和DPO是两种用于大规模语言模型(如GPT系列)微调的算法,它们在优化目标、数据处理和应用场景上有不同的特点。以下是对这两种算法的详细介绍

一、Supervised Fine-Tuning

《HOW ABILITIES IN LARGE LANGUAGE MODELS ARE AFFECTED BY SUPERVISED FINE-TUNING DATA COM- POSITION》

https://arxiv.org/pdf/2310.05492.pdf

SFT 是一种传统的监督学习微调方法,它通过使用带标签的数据集对预训练模型进行微调。该方法的核心目标是调整模型的参数,使其在特定任务或数据集上表现更好。

1、SFT 常见微调步骤

  • 数据准备:使用一个标注好的数据集,通常这些数据集包含输入-输出对,表示模型应该学习的映射关系。

  • 目标函数:模型通过最小化预测结果与真实标签之间的损失(通常是交叉熵损失)来进行训练。这个过程使得模型能够更好地执行特定的任务,如文本分类、问答、文本生成等。

  • 微调过程:在预训练的基础上,SFT 通过反向传播算法更新模型的参数,使得模型在特定任务上表现更佳。

2、优点
  • 简单直观:作为一种传统的微调方法,SFT易于理解和实现。

  • 高效性:对于特定任务,它通常能在短时间内获得较好的性能。

  • 可控性强:通过标注数据进行监督学习,可以直接控制模型的行为。

3、缺点
  • 依赖于标注数据:SFT需要大量的高质量标注数据,这对于某些领域可能比较困难或昂贵。

  • 过拟合风险:如果微调数据量过小,模型可能会在训练数据上过拟合,导致泛化性能下降。

二、Direct Preference Optimization

《Your Language Model is Secretly a Reward Model》

https://arxiv.org/pdf/2305.18290

DPO 是一种新兴的优化方法,通常用于优化基于人类反馈的模型,尤其是在强化学习和偏好学习的背景下。DPO 主要用于训练模型使其能更好地符合用户偏好或更复杂的目标,而不仅仅是通过传统的监督学习来拟合固定的标签。DPO 方法的核心思想是直接优化模型对比不同候选答案的偏好。通常,它采用“人类反馈”或者“模型间反馈”来评估哪些输出更符合目标或更具价值。

1、DPO 常见的步骤包括

  • 数据准备:在 DPO 中,通常会收集一组对话或生成的候选答案,并通过人类标注或自动化评估机制来确定这些答案的优劣。

  • 偏好对比:模型的训练目标是优化对不同候选答案的偏好预测,具体地,通过比较候选答案的质量来进行优化。比如,在对话生成任务中,模型需要通过反馈判断哪个回答更符合用户的需求。

  • 损失函数:DPO 常常采用基于排名或偏好的损失函数,来通过优化模型输出的偏好评分来提升性能。这种方法更关注不同候选之间的相对质量,而不是单一的预测准确性。

2、优点
  • 人类反馈驱动:DPO能够充分利用人类的偏好数据,生成更加符合人类意图和价值观的输出。

  • 高质量输出:通过优化模型对输出的偏好判断,DPO 可以帮助生成更加精准、相关的回答或内容。

  • 适应性强:DPO 对模型的输出进行细粒度的优化,使其可以更好地适应复杂的应用场景,如对话系统、个性化推荐等。

3、缺点
  • 依赖偏好数据:DPO 需要大量的人类反馈或相似的偏好数据进行训练,这种数据的收集成本较高。

  • 训练难度大:与传统的监督学习相比,DPO 的训练过程较为复杂,需要处理更多样化的数据和多层次的优化目标。

三、总结:

  • SFT 是一种标准的监督微调方法,主要通过标注数据来微调预训练模型,适用于任务明确且有丰富标注数据的场景。

  • DPO 则侧重于根据用户的偏好或反馈来优化模型的输出,适用于需要根据不同情境、个性化需求进行调整的任务,如对话生成、内容推荐等。

这两种方法各有优势,具体选择哪种方法取决于任务的特性和可用的数据。

零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
请添加图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈

### 对Intenlm模型应用DPO微调 对于Intenlm模型而言,采用DPO(Data Parallel Optimization)进行微调意味着直接优化策略模型(\(\pi_\theta\))而无需显式的奖励模型[^1]。具体来说,在准备阶段,需要收集偏好数据集用于指导模型调整方向。 在实现过程中,首先加载预训练好的Intenlm模型以及对应的分词器: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "path_to_intenlm_model" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) ``` 定义损失函数时遵循DPO原则,即基于偏好反馈来构建损失项而非依赖于传统强化学习中的环境给予的具体数值型回报信号。这涉及到对比不同输出序列的质量差异并据此调整参数权重以促进更优解的生成概率。 为了适应这种特殊的优化方式,可以利用专门设计的数据结构存储成对比较样本及其标签(表示哪一个选项被人类标注者认为更好),进而通过自定义Dataset类读取这些信息供后续迭代更新所用: ```python import torch from torch.utils.data import Dataset class PreferenceDataset(Dataset): def __init__(self, tokenizer, pairs, labels): self.tokenizer = tokenizer self.pairs = pairs # List of tuples containing two sequences to compare. self.labels = labels # Binary label indicating preferred sequence. def __len__(self): return len(self.pairs) def __getitem__(self, idx): seq_a, seq_b = self.pairs[idx] inputs_a = self.tokenizer(seq_a, truncation=True, padding='max_length', max_length=512, return_tensors="pt") inputs_b = self.tokenizer(seq_b, truncation=True, padding='max_length', max_length=512, return_tensors="pt") item = { 'input_ids': [inputs_a['input_ids'].squeeze(), inputs_b['input_ids'].squeeze()], 'attention_mask': [inputs_a['attention_mask'].squeeze(), inputs_b['attention_mask'].squeeze()], 'label': torch.tensor([self.labels[idx]], dtype=torch.float32), } return item ``` 接着配置优化器调度程序,并编写训练循环逻辑执行实际的梯度下降过程。值得注意的是,由于DPO强调在线性时间内完成单步操作,因此建议选用AdamW这类支持动量加速收敛特性的算法作为基础求导工具;同时考虑到资源效率问题,相较于其他方法如PPO,DPO展现出更低的计算成本优势,尤其是在指令跟随性能方面表现尤为突出[^2]。 最后启动训练流程之前还需指定设备(CPU/GPU),并将整个项目迁移到选定平台上运行直至满足预期目标为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值