PaddleNLP--UIE--小样本快速提升性能(含doccona标注)

0.信息抽取定义以及难点

自动从无结构或半结构的文本中抽取出结构化信息的任务, 主要包含的任务包含了实体识别、关系抽取、事件抽取、情感分析、评论抽取等任务; 同时信息抽取涉及的领域非常广泛,信息抽取的技术需求高,下面具体展现一些示例

  • 需求跨领域跨任务:领域之间知识迁移难度高,如通用领域知识很难迁移到垂类领域,垂类领域之间的知识很难相互迁移;存在实体、关系、事件等不同的信息抽取任务需求。
  • 定制化程度高:针对实体、关系、事件等不同的信息抽取任务,需要开发不同的模型,开发成本和机器资源消耗都很大。
  • 训练数据无或很少:部分领域数据稀缺,难以获取,且领域专业性使得数据标注门槛高。

针对以上难题,中科院软件所和百度共同提出了一个大一统诸多任务的通用信息抽取技术 UIE(Unified Structure Generation for Universal Information Extraction),发表在ACL‘22。UIE在实体、关系、事件和情感等4个信息抽取任务、13个数据集的全监督、低资源和少样本设置下,UIE均取得了SOTA性能。

PaddleNLP结合文心大模型中的知识增强NLP大模型ERNIE 3.0,发挥了UIE在中文任务上的强大潜力,开源了首个面向通用信息抽取的产业级技术方案,不需要标注数据(或仅需少量标注数据),即可快速完成各类信息抽取任务。

**链接指路:https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/uie

1.使用PaddleNLP Taskflow工具解决信息抽取难点(中文版本)

1.1安装PaddleNLP

代码语言:python

复制

! pip install --upgrade paddlenlp
! pip show paddlenlp

1.2 使用Taskflow UIE任务看看效果

人力资源入职证明信息抽取

代码语言:python

复制

from paddlenlp import Taskflow 
schema = ['姓名', '毕业院校', '职位', '月收入', '身体状况']
ie = Taskflow('information_extraction', schema=schema)

代码语言:python

复制

schema = ['姓名', '毕业院校', '职位', '月收入', '身体状况']
ie.set_schema(schema)
ie('兹证明凌霄为本单位职工,已连续在我单位工作5 年。学历为嘉利顿大学毕业,目前在我单位担任总经理助理  职位。近一年内该员工在我单位平均月收入(税后)为  12000 元。该职工身体状况良好。本单位仅此承诺上述表述是正确的,真实的。')

代码语言:python

复制

[{'姓名': [{'text': '凌霄',
    'start': 3,
    'end': 5,
    'probability': 0.9042383385504706}],
  '毕业院校': [{'text': '嘉利顿大学',
    'start': 28,
    'end': 33,
    'probability': 0.9927952662605009}],
  '职位': [{'text': '总经理助理',
    'start': 44,
    'end': 49,
    'probability': 0.9922470268350594}],
  '月收入': [{'text': '12000 元',
    'start': 77,
    'end': 84,
    'probability': 0.9788556518998917}],
  '身体状况': [{'text': '良好',
    'start': 92,
    'end': 94,
    'probability': 0.9939678710475306}]}]

代码语言:python

复制

# Jupyter Notebook默认做了格式化输出,如果使用其他代码编辑器,可以使用Python原生包pprint进行格式化输出

from pprint import pprint
pprint(ie('兹证明凌霄为本单位职工,已连续在我单位工作5 年。学历为嘉利顿大学毕业,目前在我单位担任总经理助理  职位。近一年内该员工在我单位平均月收入(税后)为  12000 元。该职工身体状况良好。本单位仅此承诺上述表述是正确的,真实的。'))
医疗病理分析

代码语言:python

复制

schema = ['肿瘤部位', '肿瘤大小']
ie.set_schema(schema)
ie('胃印戒细胞癌,肿瘤主要位于胃窦体部,大小6*2cm,癌组织侵及胃壁浆膜层,并侵犯血管和神经。')

代码语言:python

复制

[{'肿瘤部位': [{'text': '胃窦体部',
    'start': 13,
    'end': 17,
    'probability': 0.9601818899487213}],
  '肿瘤大小': [{'text': '6*2cm',
    'start': 20,
    'end': 25,
    'probability': 0.9670914301489972}]}]

1.3使用Taskflow UIE进行实体抽取、关系抽取、事件抽取、情感分类、观点抽取

代码语言:python

复制

# 实体抽取
schema = ['时间', '赛手', '赛事名称']
ie.set_schema(schema)
ie('2月8日上午北京冬奥会自由式滑雪女子大跳台决赛中中国选手谷爱凌以188.25分获得金牌!')

代码语言:python

复制

[{'时间': [{'text': '2月8日上午',
    'start': 0,
    'end': 6,
    'probability': 0.9857379716035553}],
  '赛手': [{'text': '中国选手谷爱凌',
    'start': 24,
    'end': 31,
    'probability': 0.7232891682586384}],
  '赛事名称': [{'text': '北京冬奥会自由式滑雪女子大跳台决赛',
    'start': 6,
    'end': 23,
    'probability': 0.8503080086948529}]}]

代码语言:python

复制

# 关系抽取
schema = {'歌曲名称': ['歌手', '所属专辑']}  
ie.set_schema(schema)
ie('《告别了》是孙耀威在专辑爱的故事里面的歌曲')

代码语言:python

复制

[{'歌曲名称': [{'text': '告别了',
    'start': 1,
    'end': 4,
    'probability': 0.629614912348881,
    'relations': {'歌手': [{'text': '孙耀威',
       'start': 6,
       'end': 9,
       'probability': 0.9988381005599081}],
     '所属专辑': [{'text': '爱的故事',
       'start': 12,
       'end': 16,
       'probability': 0.9968462078543183}]}},
   {'text': '爱的故事',
    'start': 12,
    'end': 16,
    'probability': 0.28168707817316374,
    'relations': {'歌手': [{'text': '孙耀威',
       'start': 6,
       'end': 9,
       'probability': 0.9951415104192272}]}}]}]

代码语言:python

复制

# 事件抽取
schema = {'地震触发词': ['地震强度', '时间', '震中位置', '震源深度']}  # 事件需要通过xxx触发词来选择触发词
ie.set_schema(schema)
ie('中国地震台网正式测定:5月16日06时08分在云南临沧市凤庆县(北纬24.34度,东经99.98度)发生3.5级地震,震源深度10千米。')

代码语言:python

复制

[{'地震触发词': [{'text': '地震',
    'start': 56,
    'end': 58,
    'probability': 0.9977425555988333,
    'relations': {'地震强度': [{'text': '3.5级',
       'start': 52,
       'end': 56,
       'probability': 0.998080217831891}],
     '时间': [{'text': '5月16日06时08分',
       'start': 11,
       'end': 22,
       'probability': 0.9853299772936026}],
     '震中位置': [{'text': '云南临沧市凤庆县(北纬24.34度,东经99.98度)',
       'start': 23,
       'end': 50,
       'probability': 0.7874014521275967}],
     '震源深度': [{'text': '10千米',
       'start': 63,
       'end': 67,
       'probability': 0.9937974422968665}]}}]}]

代码语言:python

复制

# 情感倾向分类
schema = '情感倾向[正向,负向]' # 分类任务需要[]来设置分类的label
ie.set_schema(schema) 
ie('这个产品用起来真的很流畅,我非常喜欢')

代码语言:python

复制

[{'情感倾向[正向,负向]': [{'text': '正向', 'probability': 0.9990024058203417}]}]

代码语言:python

复制

# 评价抽取
schema = {'评价维度': ['观点词', '情感倾向[正向,负向]']}  # 评价抽取的schema是固定的,后续直接按照这个schema进行观点抽取
ie.set_schema(schema) # Reset schema
ie('地址不错,服务一般,设施陈旧')

代码语言:python

复制

[{'评价维度': [{'text': '地址',
    'start': 0,
    'end': 2,
    'probability': 0.9888139270606509,
    'relations': {'观点词': [{'text': '不错',
       'start': 2,
       'end': 4,
       'probability': 0.9927845886615216}],
     '情感倾向[正向,负向]': [{'text': '正向', 'probability': 0.998228967796706}]}},
   {'text': '设施',
    'start': 10,
    'end': 12,
    'probability': 0.9588298547520608,
    'relations': {'观点词': [{'text': '陈旧',
       'start': 12,
       'end': 14,
       'probability': 0.928675281256794}],
     '情感倾向[正向,负向]': [{'text': '负向', 'probability': 0.9949388606013692}]}},
   {'text': '服务',
    'start': 5,
    'end': 7,
    'probability': 0.9592857070501211,
    'relations': {'观点词': [{'text': '一般',
       'start': 7,
       'end': 9,
       'probability': 0.9949359182521675}],
     '情感倾向[正向,负向]': [{'text': '负向', 'probability': 0.9952498258302498}]}}]}]

代码语言:python

复制

# 跨任务跨领域抽取
schema = ['寺庙', {'丈夫': '妻子'}]  # 抽取的任务中包含了实体抽取和关系抽取
ie.set_schema(schema)
ie('李治即位后,让身在感业寺的武则天续起头发,重新纳入后宫。')

代码语言:python

复制

[{'寺庙': [{'text': '感业寺',
    'start': 9,
    'end': 12,
    'probability': 0.9888581774497425}],
  '丈夫': [{'text': '李治',
    'start': 0,
    'end': 2,
    'probability': 0.989690572797457,
    'relations': {'妻子': [{'text': '武则天',
       'start': 13,
       'end': 16,
       'probability': 0.9987625986790256}]}}]}]

1.4使用Taskflow UIE一些技巧

1.4.1. 调整batch_size提升预测效率

代码语言:python

复制

from paddlenlp import Taskflow
schema = ['费用']
ie.set_schema(schema)
ie = Taskflow('information_extraction', schema=schema, batch_size=2) #资源不充裕情况,batch_size设置小点,利用率增加。。
ie(['二十号21点49分打车回家46块钱', '8月3号往返机场交通费110元', '2019年10月17日22点18分回家打车46元', '三月三0号23点10分加班打车21元'])

代码语言:python

复制

[{'费用': [{'text': '46块钱',
    'start': 13,
    'end': 17,
    'probability': 0.9781786110574338}]},
 {'费用': [{'text': '110元',
    'start': 11,
    'end': 15,
    'probability': 0.9504088995163151}]},
 {'费用': [{'text': '46元',
    'start': 21,
    'end': 24,
    'probability': 0.9753814247531167}]},
 {'费用': [{'text': '21元',
    'start': 15,
    'end': 18,
    'probability': 0.9761294626311425}]}]
1.4.2. 使用UIE-Tiny模型来加快模型预测速度

代码语言:python

复制

from paddlenlp import Taskflow
schema = ['费用']
ie.set_schema(schema)
ie = Taskflow('information_extraction', schema=schema, batch_size=2, model='uie-tiny') #
ie(['二十号21点49分打车回家46块钱', '8月3号往返机场交通费110元', '2019年10月17日22点18分回家打车46元', '三月三0号23点10分加班打车21元'])

代码语言:python

复制

[{'费用': [{'text': '46块钱',
    'start': 13,
    'end': 17,
    'probability': 0.8945340489542026}]},
 {'费用': [{'text': '110元',
    'start': 11,
    'end': 15,
    'probability': 0.9757676375014448}]},
 {'费用': [{'text': '46元',
    'start': 21,
    'end': 24,
    'probability': 0.860397941604333}]},
 {'费用': [{'text': '21元',
    'start': 15,
    'end': 18,
    'probability': 0.8595131018474689}]}]

2.小样本提升UIE效果

Taskflow中的UIE基线版本我们是通过大量的有标签样本进行训练,但是UIE抽取的效果面对部分子领域的效果也不是令人满意,UIE可以通过小样本就可以快速提升效果。

为什么UIE可以通过小样本来提升效果呢?UIE的建模方式主要是通过 Prompt 方式来建模, Prompt 在小样本上进行微调效果非常有效,下面我们通过一个具体的case

来展示UIE微调的效果。

2.1语音报销工单信息抽取

1. 背景

在某公司内部可以通过语音输入来报销打车费用,通过语音ASR模型可以将语音识别为文字,同时对文字信息进行信息抽取,抽取的信息主要是包括了4个方面,时间、出发地、目的地、费用,通过对文字4个方面的信息进行抽取就可以完成一个报销工单的填写。

img

2. 挑战

目前Taskflow UIE任务对于这种非常垂类的任务效果没有完全达到工业使用水平,因此需要一定的微调手段来完成UIE模型的微调来提升模型的效果,下面是一些case的展现

代码语言:python

复制

ie.set_schema(['时间', '出发地', '目的地', '费用'])
ie('10月16日高铁从杭州到上海南站车次d5414共48元')  # 无法准确抽取出发地、目的地

代码语言:python

复制

[{'时间': [{'text': '10月16日',
    'start': 0,
    'end': 6,
    'probability': 0.9552445817793149}],
  '出发地': [{'text': '杭州',
    'start': 9,
    'end': 11,
    'probability': 0.5713024802221334}],
  '费用': [{'text': '48元',
    'start': 24,
    'end': 27,
    'probability': 0.8932524634666485}]}]

2.2 标注数据

参考链接详细版本—doccano标注过程

我们推荐使用数据标注平台doccano 进行数据标注,本案例也打通了从标注到训练的通道,即doccano导出数据后可通过doccano.py脚本轻松将数据转换为输入模型时需要的形式,实现无缝衔接。为达到这个目的,您需要按以下标注规则在doccano平台上标注数据:

img

Step 1. 本地安装doccano(请勿在AI Studio内部运行,本地测试环境python=3.8)

$ pip install doccano

Step 2. 初始化数据库和账户(用户名和密码可替换为自定义值)

$ doccano init

$ doccano createuser --username my_admin_name --password my_password

Step 3. 启动doccano

  • 在一个窗口启动doccano的WebServer,保持窗口

$ doccano webserver --port 8000

  • 在另一个窗口启动doccano的任务队列

$ doccano task

Step 4. 运行doccano来标注实体和关系

  • 打开浏览器(推荐Chrome),在地址栏中输入http://127.0.0.1:8000/后回车即得以下界面。

img

  • 登陆账户。点击右上角的LOGIN,输入Step 2中设置的用户名和密码登陆。

  • 创建项目。点击左上角的

    CREATE
    

    ,跳转至以下界面。 - 勾选序列标注(

    Sequence Labeling
    

    ) - 填写项目名称(

    Project name
    

    )等必要信息 - 勾选允许实体重叠(

    Allow overlapping entity
    

    )、使用关系标注(

    Use relation labeling
    

    ) - 创建完成后,项目首页视频提供了从数据导入到导出的七个步骤的详细说明。

    img

    img

  • 设置标签。在Labels一栏点击

    Actions
    

    Create Label
    

    手动设置或者

    Import Labels
    

    从文件导入。 - 最上边Span表示实体标签,Relation表示关系标签,需要分别设置。

    img

  • 导入数据。在Datasets一栏点击

    Actions
    

    Import Dataset
    

    从文件导入文本数据。 - 根据文件格式(File format)给出的示例,选择适合的格式导入自定义数据文件。

    • 导入成功后即跳转至数据列表。
  • 标注数据。点击每条数据最右边的

    Annotate
    

    按钮开始标记。标记页面右侧的标签类型(Label Types)开关可在实体标签和关系标签之间切换。 - 实体标注:直接用鼠标选取文本即可标注实体。

    • 关系标注:首先点击待标注的关系标签,接着依次点击相应的头尾实体可完成关系标注。
  • 导出数据。在Datasets一栏点击ActionsExport Dataset导出已标注的数据。

将标注数据转化成UIE训练所需数据
  • 将doccano平台的标注数据保存在./data/目录。对于语音报销工单信息抽取的场景,可以直接下载标注好的数据
各个任务标注文档

https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/uie/doccano.md

代码语言:python

复制

! wget https://paddlenlp.bj.bcebos.com/datasets/erniekit/speech-cmd-analysis/audio-expense-account.jsonl
! mv audio-expense-account.jsonl ./data/

运行以下代码将标注数据转换为UIE训练所需要的数据

splits 0.2 0.8 0.0 训练集 测试集 验证集

可配置参数说明
  • doccano_file: 从doccano导出的数据标注文件。
  • save_dir: 训练数据的保存目录,默认存储在data目录下。
  • negative_ratio: 最大负例比例,该参数只对抽取类型任务有效,适当构造负例可提升模型效果。负例数量和实际的标签数量有关,最大负例数量 = negative_ratio * 正例数量。该参数只对训练集有效,默认为5。为了保证评估指标的准确性,验证集和测试集默认构造全负例。
  • splits: 划分数据集时训练集、验证集所占的比例。默认为0.8, 0.1, 0.1表示按照8:1:1的比例将数据划分为训练集、验证集和测试集。
  • task_type: 选择任务类型,可选有抽取和分类两种类型的任务。
  • options: 指定分类任务的类别标签,该参数只对分类类型任务有效。
  • prompt_prefix: 声明分类任务的prompt前缀信息,该参数只对分类类型任务有效。
  • is_shuffle: 是否对数据集进行随机打散,默认为True。
  • seed: 随机种子,默认为1000.

代码语言:python

复制

! python preprocess.py --input_file ./data/audio-expense-account.jsonl --save_dir ./data/ --negative_ratio 5 --splits 0.2 0.8 0.0 --seed 1000

2.3 训练UIE模型

  • 使用标注数据进行小样本训练,模型参数保存在./checkpoint/目录。

tips: 推荐使用GPU环境,否则可能会内存溢出。CPU环境下,可以修改model为uie-tiny,适当调下batch_size。

增加准确率的话:–num_epochs 设置大点多训练训练

可配置参数说明:
  • train_path: 训练集文件路径。
  • dev_path: 验证集文件路径。
  • save_dir: 模型存储路径,默认为./checkpoint
  • learning_rate: 学习率,默认为1e-5。
  • batch_size: 批处理大小,请结合显存情况进行调整,若出现显存不足,请适当调低这一参数,默认为16。
  • max_seq_len: 文本最大切分长度,输入超过最大长度时会对输入文本进行自动切分,默认为512。
  • num_epochs: 训练轮数,默认为100。
  • model: 选择模型,程序会基于选择的模型进行模型微调,可选有uie-baseuie-tiny,默认为uie-base
  • seed: 随机种子,默认为1000.
  • logging_steps: 日志打印的间隔steps数,默认10。
  • valid_steps: evaluate的间隔steps数,默认100。
  • device: 选用什么设备进行训练,可选cpu或gpu。

代码语言:python

复制

! python finetune.py --train_path ./data/train.txt --dev_path ./data/dev.txt --save_dir ./checkpoint --model uie-tiny --learning_rate 1e-5 --batch_size 2 --max_seq_len 512 --num_epochs 50 --seed 1000 --logging_steps 10 --valid_steps 10

代码语言:python

复制

#! python finetune.py --train_path ./data/train.txt --dev_path ./data/dev.txt --save_dir ./checkpoint --model uie-base --learning_rate 1e-5 --batch_size 16 --max_seq_len 512 --num_epochs 50 --seed 1000 --logging_steps 10 --valid_steps 10
  • 使用小样本训练后的模型参数再次测试无法正确抽取的case。

代码语言:python

复制

from paddlenlp import Taskflow

schema = ['时间', '出发地', '目的地', '费用']

few_ie = Taskflow('information_extraction', schema=schema, task_path='./checkpoint/model_best')

few_ie(['10月16日高铁从杭州到上海南站车次d5414共48元',
        '10月22日从公司到首都机场38元过路费'])

代码语言:python

复制

[{'时间': [{'text': '10月16日',
    'start': 0,
    'end': 6,
    'probability': 0.9998620769863464}],
  '出发地': [{'text': '杭州',
    'start': 9,
    'end': 11,
    'probability': 0.997861665709749}],
  '目的地': [{'text': '上海南站',
    'start': 12,
    'end': 16,
    'probability': 0.9974161074329579}],
  '费用': [{'text': '48',
    'start': 24,
    'end': 26,
    'probability': 0.950222029031579}]},
 {'时间': [{'text': '10月22日',
    'start': 0,
    'end': 6,
    'probability': 0.9995716364718135}],
  '目的地': [{'text': '首都机场',
    'start': 10,
    'end': 14,
    'probability': 0.9984550308953608}],
  '费用': [{'text': '38',
    'start': 14,
    'end': 16,
    'probability': 0.9465688451171062}]}]

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

  • 14
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值