Illustrious模型的创新应用
Illustrious是一款基于Stable Diffusion XL的AI图像生成模型,其通过整合Danbooru标签系统,显著提升了文本到图像生成的精确性与易用性。相比依赖复杂自然语言描述的传统模型,Illustrious采用高效的标签体系,能够准确理解视觉概念,轻松实现高分辨率图像的生成,其分辨率可达3744×3744。模型的训练过程包括多阶段优化,从初始750万张图片扩展到最终版本的2000万张,同时采用无丢弃标记、多字幕等技术提升效果。Illustrious适用于多种平台,用户只需简单加载模型即可操作,推荐搭配微调版本以实现最佳输出。该模型的成功展现了基础与创新结合的重要性,为AI艺术生成工具开辟了全新路径,推动了高质量、可定制化的二次元图像创作。
Firefly批量编辑工具发布
Adobe近期推出Firefly Bulk Create工具,允许用户同时编辑数万张图像,大幅提升工作效率。目前该功能在美国地区上线Beta版,支持批量调整图像大小和背景更改。用户可删除原背景并替换为新图像或指定颜色,操作便捷,仅需一键完成。批处理文件支持保存为PNG或JPEG格式,未来将增加对PSD文件的支持。在“调整大小”功能中,工具提供多种预设尺寸,涵盖社交平台和广告需求,并采用生成式AI技术实现背景拉伸。然而,背景复杂的图像可能出现轻微扭曲。因任务对计算能力要求较高,Bulk Create功能仅向付费用户开放,预计对高级会员提供支持。作为Adobe Firefly的组成部分,该工具既能独立运行,也可整合至Adobe其他应用程序,为创意工作者提供强大支持。此举标志着Adobe在生成式AI领域的又一突破,致力于为用户提供高效、智能的图像编辑体验。
代码生成模型竞逐
Mistral公司更新了其开源编程模型Codestral,推出新版本Codestral 25.01,以更高效的架构和两倍的运行速度赢得开发者青睐。该模型专为低延迟和高频次任务优化,支持代码修正、测试生成等功能,特别适合处理海量数据的企业用户。基准测试显示,Codestral 25.01在Python编程中表现优异,HumanEval得分86.6%,超越多款竞争对手模型。目前用户可通过多个平台访问并部署此模型,未来还将登陆Amazon Bedrock。近年来,专注编程的模型逐步崛起,与通用模型在功能专业性与广泛适用性之间展开竞争,而Codestral以高效表现进一步巩固了专业编程模型的地位。
多模态推理新标杆
Mohamed bin Zayed人工智能大学推出的LlamaV-o1模型在多模态推理领域取得重大突破。该模型结合课程学习和集束搜索,专注于逐步推理,可清晰展示从问题到结论的逻辑步骤,显著提升了推理过程的透明度和可解释性。通过VRC-Bench基准测试,LlamaV-o1在金融图表分析、医学影像诊断等任务中表现卓越,以68.93的推理得分超越众多开源与闭源模型,并实现了推理效率的5倍提升。该模型满足金融、医学和教育等行业对AI可解释性的需求,但需警惕训练数据质量对其性能的影响。LlamaV-o1标志着多模态AI技术朝透明、高效方向迈进的重要一步。
微软成立CoreAI团队聚焦AI堆栈
微软成立全新CoreAI团队,聚焦人工智能平台与工具开发,由前Meta工程主管杰伊·帕里克领导,整合开发者部门和AI平台团队。首席执行官纳德拉表示,AI将在未来三年内推动应用堆栈的全面变革,微软计划打造以Azure为基础的端到端AI堆栈,涵盖Azure AI Foundry、GitHub和VS Code等平台,以重塑SaaS应用和定制开发模式。帕里克将直接向纳德拉汇报,带领团队推动AI工具的开发与应用,为微软及客户提供强大的AI支持。
AI推理模型引领新变革
近年来,AI推理模型快速发展,自OpenAI于2024年推出o1模型后,引发了一场技术革命。o1在解决复杂数学和科学问题方面表现优异,但其高昂成本(每百万标记15美元)引发争议。随后,DeepSeek、Google和LlamaV等公司推出了类似产品,推动市场竞争。推理模型采用“思维链”技术,强调逐步推理和自我反思,使答案更精准。专家建议用户通过详细的简报引导模型发挥推理能力,而非过度干预。非推理型LLM也可通过改进提示方法提升表现。随着AI技术进步,提示工程的重要性愈发凸显,成为释放AI潜力的关键。
生成式AI安全挑战与应对策略
微软AI红队近日发布白皮书,分析生成式AI的安全风险,并提出应对方案。报告指出,生成式AI在放大现有安全漏洞的同时,引入新风险,如提示注入和传统组件漏洞问题。红队强调人类在AI安全中的核心作用,特别是在复杂领域的评估中。尽管自动化工具有效,但专业领域仍需人类监督。生成式AI模型在语言和文化多样性中的不足也凸显了人类介入的重要性。报告提出分层防御策略,通过持续测试和自适应方法减少漏洞,提高整体安全水平。
微软Copilot功能遭批评
Salesforce首席执行官Marc Benioff在节目中公开批评微软Copilot AI,指其缺乏创新,仅将OpenAI技术简单嵌入Office工具,并称客户对其应用感受平平,几乎不使用。Benioff将Copilot比作“Clippy 2.0”,认为其缺乏必要的数据与安全性支撑,无法满足企业需求。微软内部也透露了Copilot在隐私和功能性方面的诸多问题,员工称其部分工具“华而不实”,用户体验与愿景存在显著落差。尽管面临争议,微软仍在加速推进AI发展,但其方向和成效正受到业界广泛质疑。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈