基于图神经网络的高频交易系统

一、引言:高频交易在中国A股市场的机遇与挑战

近年来,随着计算机硬件和人工智能技术的飞速发展,量化投资作为一大投资类别在中国市场迅速崛起。量化投资经历了从最初依赖人工投资理念的自动化处理,到如今基于数据、统计和人工智能构建全自动交易系统以实现稳定盈利的演变。

高频交易 (HFT) 作为一种利用强大计算机程序在极短时间内执行大量订单的交易方法,正逐渐崭露头角。成熟的HFT系统能够以极低的风险实现盈利,类似于固定收益。然而,在特定市场中,HFT的整体容量相对有限。随着越来越多的公司和机构涌入这一领域,竞争日益激烈。要在竞争中脱颖而出,企业必须掌握领先的技术,包括数学模型和算法模型。

然而,将高频量化交易应用于中国A股市场以实现稳定绝对收益并非易事,主要面临以下挑战:

  1. 交易限制:

    • T+1交易规则: 当天买入的股票无法当天卖出,但卖出股票后可以再买入。这意味着要实现高频交易,必须持有股票多头头寸,并利用做空工具进行对冲。
    • 做空工具稀缺: 中国A股市场缺乏多样化的做空工具,目前流动性较好的官方做空工具主要是股指期货,但种类有限。例如,最常用的IC合约对应的是中证500指数,其成分股波动相对较小,限制了短期交易利润。此外,2020年上半年对冲的平均成本超过每月1%。
  2. 交易成本高: 买卖一次交易的成本通常占交易价值的0.12%以上。

  3. 市场波动性: 中国A股市场受政策影响较大,波动性较高,增加了交易风险。

为了克服上述挑战,实现稳定盈利,需要构建一个能够有效分析股票相关性和预测未来价格的高频交易系统。

二、相关工作:量化交易系统的多维度研究

量化交易系统是一个复杂的工程,涉及多个交互模块,相关研究可按其重点关注的模块进行分类:

  1. 数据源相关: 包括基本面分析、特定事件等。

  2. 特定交易方法: 如套利、配对交易等。

  3. 交易策略研究:

    • 均值回归策略: 假设价格会回归到其均值。
    • 动量策略: 假设价格会沿着当前趋势继续发展。
    • 强化学习策略: 利用强化学习算法进行交易决策。
  4. 交易执行模型: 如算法交易等。

  5. 投资组合优化方法: 如投资组合管理等。

  6. 预测问题研究:

    • 因子挖掘: 寻找影响股票价格的因素。
    • 机器学习方法: 利用机器学习模型预测价格变化,例如决策树、支持向量机(SVM)、神经网络、贝叶斯网络等。

此外,Alpha 研究也是股票量化交易中常见的研究方向。Alpha 是指投资相对于合适基准(如市场指数或行业指数)的超额收益。Alpha 研究依赖于数据,包括价格和成交量、基本面、宏观经济数据、文本(如美联储公开市场委员会会议纪要、公司文件、论文、期刊、新闻或社交媒体)、多媒体(尤其是相关视频或音频)等。

然而,本文提出的方法在中国A股市场通常被归类为 T+0(日内交易)研究,而非 Alpha 研究。两者主要区别在于:

  • 收益来源: 本文方法的核心是单只股票的短期价格预测,而非追求相对于基准的超额收益。
  • 目标: 本文方法旨在适应中国市场交易规则,提高收益并控制风险,而非追求超越市场的表现。

三、本文提出的方法:基于图注意力长短期记忆网络 (GALSTM) 的高频交易系统

3.1 系统框架概述

本文提出的系统框架如图1所示,主要包含以下五个模块:

  1. 数据处理模块: 对中国A股市场数据进行预处理,包括时间对齐和价格校正,将每只股票的特征提取为公平价格序列。
  2. 相关性分析与预测模块: 利用提出的 GALSTM 模型分析不同股票之间的相关性,并预测其未来价格。
  3. 策略实施模块: 基于模型输出的单只股票预测结果进行实际交易。模型输出作为信号触发交易,并确定交易方向。同时,根据模型输出和高频交易策略确定交易价格和数量,最终生成实际交易订单。
  4. 组合管理模块: 在该模块中构建动态多头头寸。GALSTM 模型得到的关联图用于辅助判断单只股票的风险,并通过回测估计其预期收益。为了实现稳定盈利,动态调整交易中的股票,以平衡收益和风险。
  5. 交易平台: 连接自动交易系统和交易所的底层平台,需要稳定高效。

图1 系统概述图1 系统概述

3.2 数据处理:定义公平价格

为了更准确地捕捉股票价格模式,并减少人为价格波动的影响,本文提出了一种基于实验结果的公平价格定义方法。

  • 时间对齐: 由于交易所提供的时间戳不够准确,需要结合订单和交易数据,通过上下文推断来推断数据的时间,从而确保同一时间点的市场数据具有相同的时间戳。
  • 价格校正: 考虑到中国A股市场最小价格变动单位为0.01,对于价格较高的股票,最小价格变动大于千分之一。对于年化收益率为25%的产品,每天只需盈利千分之一即可。因此,价格本质上是离散的,任何交易价格都无法准确描述真实价值。

本文列举了几种常用的价格计算方法,并最终选择交易价格 (tradeprice) 作为公平价格:

其中,ap1 和 bp1 分别代表最佳卖价和买价,bv1 和 av1 分别代表最佳卖价和买价的挂单量,lt 代表上一快照到当前快照的交易量。

3.3 股票相关性分析与价格预测:GALSTM 模型

为了分析不同股票之间的相关性并预测其未来价格,本文提出了一种新颖的基于图的模型 GALSTM。该模型的主要流程如下:

  1. 事件序列生成:

    • 将股票价格时间序列转换为事件序列,用于霍克斯过程建模。
    • 定义事件为股票波动率超过一定阈值且持续超过一定时间的时间区间,事件的到达时间为该时间区间的中间时间。
  2. 多维霍克斯过程建模:

    • 使用多维霍克斯过程对事件序列进行建模,其中每个维度代表一只股票。

    • 霍克斯过程是一种自激励点过程,其事件可以由其他事件触发。

    • 公式如下:

      图片

    • 其中, 表示在时间 时,第 维事件发生的预期发生率, 表示第 个事件的到达时间, 表示第 个事件所属的维度, 表示第 维的基础强度, 表示第 维事件对第 维事件的相互激励系数, 表示衰减核函数,用于衰减第 个事件对时间 的影响。

  3. 相关性图构建:

    • 使用最大似然估计 (MLE) 估计相互激励系数矩阵 和基础强度向量 。
    • 为了有效学习霍克斯模型,采用梯度下降算法,并添加低秩正则化和稀疏性正则化来改进模型。
    • 最终得到一个非负的、低秩的、稀疏的矩阵 ,它包含了原始时间序列的相关性信息。
    • 根据 构建一个 节点的相关性图 ,其中第 个节点代表原始时间序列的第 维,邻接矩阵 定义如下:
  4. GALSTM 模型构建:

    其中, 代表包含 的那天的第一个时间步的数据, 是一个给定的比率。

    • 将每只股票的公平价格序列嵌入到特征向量中,得到输入矩阵 。
    • 将 输入到图注意力层,得到每个节点的新特征 。
    • 将每个 输入到独特的 LSTM 单元中,得到输出 。
    • 最终网络的输出为 。
    • 预测结果为 ,并根据市场实际情况设置上下限进行调整:

图2 GALSTM 模型概述图2 GALSTM 模型概述

3.4 策略实施:高频交易策略

为了实现稳定收益的完全自动化高频量化交易系统,策略应具备以下三个重要特征:

  • 交易目标相对分散: 选择数百只股票,并利用股指期货进行对冲,使利润对市场涨跌不敏感。
  • 交易周期相对短暂: 依靠单只股票的短期交易获得利润。由于持有大量股票且单笔交易时间短,单笔交易的盈亏较低,从而确保风险处于较低水平。
  • 交易头寸敞口相对较低: 一旦出现连续亏损,可以及时停止所有交易,实际损失将非常小。

在执行实际交易策略时,需要评估的关键因素包括股票选择、交易方向、交易价格和交易量。主要使用 GALSTM 模型来更新股票头寸,模型预测是交易方向的主要依据。订单价格根据一些做市策略和高频交易策略进行控制。综合考虑战略头寸、风险和整个市场的交易时间段,交易量和波动性被考虑在内以控制订单量。

3.5 组合管理:动态调整头寸

为了控制持有这些股票的风险,最佳方法是复制与股指期货相对应的股票。在实际实践中,我们通常不希望完全复制这些指数。例如,我们希望找到一个波动性更高的组合。常见的方法是控制包括行业、市值等在内的共同因素的敞口。

本文使用上述构建的 GALSTM 模型来调整头寸。做空头寸使用股指期货 IC 合约。我们计算 GALSTM 模型中我们的头寸与指数的匹配度 ,其值范围从 0 到 100%。当我们准备买入或卖出股票时,我们可以假设交易成功并计算新的匹配度 。我们通过回测评估不同匹配度和波动性造成的潜在回撤。因此,我们使用当前波动性、 和 来计算当前潜在回撤 和新的潜在回撤 。同时,我们还估计了更改股票后的预期收益 和新的预期收益 。当以下判断为真时,我们将更改我们头寸中的股票权重:

其中,C 是一个常数,通常取值 0.002 到 0.003,并且与波动性正相关。具体值基于回测确定。

通过上述方法,我们成功地扩大了风险控制下的头寸范围。我们还可以根据每只股票的不同预期和整体头寸的估计风险,综合判断是否选择某只股票。

3.6 交易平台:低延迟、高频率

底层平台是连接自动交易系统和交易所的工具,需要稳定高效。如图3所示,我们的交易系统包括与交易相关的市场数据、交易接口和其他模块。它还包括与研究相关的回测、历史数据落地等模块。通过网络服务配置策略,结合历史市场信息,在一些认证服务的帮助下,最终在交易服务器上配置所需的模块。我们通过经纪人接收市场数据并进入我们的市场网关。市场网关结合各种数据源并将它们发送到策略执行程序。策略执行程序运行在交易服务器上以发出或取消订单。然后通过我们的交易网关将其发送到经纪人。交换交易信息,例如订单状态、交易量、订单取消信息等。如果发生某些风险控制事件,我们的系统将向我们发出警报。收盘后,我们的系统将保存市场数据和交易数据。

除了功能性之外,速度也是高频量化交易的一个非常重要的因素。我们的平台通常从接收市场数据到完成订单不到 2 微秒,不包括额外的风险控制。这里不包括战略时间。

图3 高频交易平台图3 高频交易平台

四、实验与案例分析

4.1 数据选择与处理

我们使用近 3 个月的所有 A 股股票数据进行分析。我们使用的基本数据存储在交易所的官方机房。在此基础上,我们校准数据并计算公平价格。

我们通过自相关测试验证了我们的校准和公平价格调整方法:由于价格本身不具有直接预测性,因此股票的股价自相关系数应该较低。如果由于时间不准确或价差较大而导致最后价格与实际价格之间存在较大差异,则会出现一定的自相关性。因此,我们可以通过这种方法测试数据处理的结果。除了少数股票外,调整后的自相关性显著下降。图 5 显示了调整前后的自相关性。

图5 调整前后的自相关性图5 调整前后的自相关性

4.2 基于 GALSTM 的相关性分析与预测

利用多维霍克斯过程结果作为图结构,我们采用 GAT 编码对标准化股票价格时间序列进行编码,以获得 GALSTM 中的隐藏状态。我们使用 PyTorch(一个流行且快速的机器学习库)实现所有图神经网络。利用 PyTorch Adam 优化器,股票价格时间序列预测值的均方误差 (MSE) 损失可以有效下降。我们展示了相关性分析和预测的结果,以展示 GALSTM 模型的优异性能。

4.2.1 相关性分析

在本部分中,为了得到不同股票事件之间的因果关系图,我们使用 PoPPy 框架训练我们的多维霍克斯过程模型,该框架是一个使用 PyTorch 和 CUDA 加速实现的开源库。我们还使用低秩正则化和稀疏矩阵正则化来改进模型。

如图 6 所示,我们展示了从 SH600731 到 SZ002428 的股票指数的 GALSTM 相关性分析过程。我们首先使用多维霍克斯过程提取这些股票的子相关图,如图 6a 所示。该图是一个稀疏图,这表明我们的低秩正则化确实有效。接下来,我们在 GALSTM 模型中嵌入并更新矩阵,并显示最终结果,如图 6b 所示。

图6 GALSTM 模型揭示的因果关系矩阵部分图6 GALSTM 模型揭示的因果关系矩阵部分

图7 不同时间间隔的模型比较图7 不同时间间隔的模型比较

表2 若干股票在上海和深圳交易所的相关性分析示例因果关系结果(从股票a到股票b)

股票a股票b因果关系股票a股票b因果关系
SH600004SH6000570.2277SZ002447SH6008510.0381
SH600004SH6000060.1559SZ002447SH6012330.0163
SH600004SH6000530.0058SZ002447SH6000560.0106
SH600006SH6000090.3991SZ002449S20020790.2133
SH600006SH6000270.3853SZ002449SH6000190.0971
SH600006SH6009590.3783SZ002449SH6010580.0891

检查我们的结果,它首先符合我们的历史经验,同时也有一些创新。如表2所示,以 SH600004 为例,我们发现最高的相关性是 SH600009,两只股票都与机场有关。我们还发现了不同行业股票之间的相关性。这些相关性是实时更新的,因此调整频率远快于传统方法。另一方面,我们不仅有分类,还有定量值。这为我们提供了良好的风险控制基础,并有效优化了最终的资金曲线。

4.2.2 预测

GALSTM 模型采用图注意力网络将相关图嵌入到 LSTM 网络中,并不断更新图的权重。未来的预测可以从下一个输出图中解码。这样,我们可以将 GALSTM 模型训练为一个端到端的框架,既方便又准确。

如图7所示,在 GALSTM 的训练过程中,输出与目标之间的 MSE 损失可以在我们的训练集上有效下降,该训练集包含 3054 只股票的价格时间序列数据,共 16 天。在此基础上,如图8所示,可以使用我们的 GALSTM 模型获得测试集中股票价格数据的预测结果,显示出良好的准确性。

4.3 投资组合管理与产品曲线

本产品采用 IC 对冲。我们首先使用与 IC 指数对应的股票作为原始头寸。然后使用 GALSTM 模型估计股票之间的相关性。接下来,使用与原始股票高度相关且预期收益更高的股票替换原始股票,以实现在风险控制下增加收益的目的。如图9所示,我们可以看到显著改善。在图9和图10中,我们已将起点标准化。

在我们的运营期间,从2020年3月27日到2020年6月30日,共95天。产品增长率11.63%,年化回报率11.63%×365/95=44.71%,日回报率的标准差仅为0.42%。

如图10所示,我们将我们与同期机构的产品进行了比较。我们选择的比较实例是中国A股市场中采用类似策略的顶级机构。可以看出,在相同的周期内,我们的系统实现了最高的回报。稳定性也非常好。

在性能评估期间,考虑到策略是日内交易,且股票数量众多,平均每日交易次数超过数百次,因此在这样一段时间内,我们认为它是统计上显著的。

图10 产品曲线图10 产品曲线

4.4 平台稳健性与速度

对于高频交易系统,我们最关心的是数据完整性和订单速度。我们通常通过多个经纪人接收数据并进行整合,然后比较单个通道的数据完整性。我们的交易系统在市场收盘后会对市场数据进行分析,大多数损失率可以小于千分之一。这样的错误通常对我们的交易影响很小。另一方面,我们将测试我们的订单速度。以深圳证券交易所为例,我们通常记录两个时间:触发信号的本地时间 和我们的订单在市场数据中收到的本地时间 。我们定义 为订单延迟。由于网络等原因,订单延迟通常会波动,如图11所示。订单延迟从小到大分为5个部分,分别统计每个部分的平均延迟和订单数量。我们可以发现,除了在开始交易的第一个分钟内延迟较大外,其他部分基本上可以保持在5ms左右,最坏的情况也在10ms以内。第一个分钟内延迟较大的原因是这段时间内订单数量很多,经纪人和交易所发送市场数据时会出现延迟。考虑到中国A股市场的切片数据每3秒更新一次,我们的系统性能已经足以支持我们的交易。

图11 交易延迟图11 交易延迟

五、结论

本文设计并实现了一个完全自动化的量化交易系统,能够在相对较长的时间内实现稳定盈利。我们的主要技术优势在于提出了一种新颖的机器学习模型 GALSTM,用于构建股票之间的相关性图模型,从而减少了中国A股市场缺乏对冲工具的影响,提高了我们对单只股票的预测能力。我们创新性地开发了通过多维霍克斯过程动态生成股票相关性图,并将其融合到基于注意力的 LSTM 中,以自适应地处理和预测图权重。由于图结构可以关注股票序列的显著特征,GALSTM 在训练时间大幅减少的同时,能够实现高精度。同时,我们设计了合理的头寸动态调整方法,以最大限度地发挥上述图形模型的效果。与其他高频技术执行策略相结合,最终实现了高回报和低风险的目标。

在未来的工作中,我们将更加关注容量问题。当我们的容量变大时,我们的交易将需要更长的时间。这给我们带来了两个问题。首先,我们需要更长时间的预测,并且应该实时调整。在我们的 GALSTM 模型中,我们目前只使用最近周期的预测值,但实际上我们可以给出未来一段时间内的预期变化,我们将在未来尝试使用更长时间的预测效果。其次,金融市场具有高度随机性,可能对初始点敏感。即使我们的预期估计相对准确,随着市场的变化,它仍然可能与初始预期产生重大偏差。目前,我们只给出后续变化的预期值。在这种情况下,我们无法获得最佳交易策略。我们还感兴趣的是研究如何给出未来变化的分布。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值