近年来,AI 领域的模型性能提升主要依赖 “大数据 + 大算力”,例如 OpenAI 的 GPT-4 训练成本高达数千万美元,DeepSeek R1 也使用了 80 万条样本进行训练。那么,是否有更经济高效的方法,能够在有限资源下训练出强大的推理 AI?
斯坦福大学李飞飞团队最近的一项研究提供了一个令人惊讶的答案:只需 1000 条数据、50 美元算力成本,就能训练出与 OpenAI o1 竞品相媲美的 AI 推理模型——s1-32B!
s1 在数学和编码能力测试中与 OpenAI 的 o1 和 DeepSeek 的 R1 等模型的表现不相上下。在通往 AGI 的路上,更高效的新方法带来了更多的创新可能。
s1 论文作者 Niklas Muennighoff 表示:
“DeepSeek-R1 令人兴奋,但缺少 OpenAI 的测试时间扩展图,并且需要大量数据。我们推出了 s1,仅使用 1K 样本和简单的测试时间干预即可重现 o1 的预览扩展和性能。”
训练方法
s1 的研究团队表示,s1 模型是以谷歌推理模型 Gemini2.0 Flash Thinking Experimental 为基础模型,通过蒸馏法提炼出来的。
1. 仅用 1000 条训练样本(s1K)
-
研究团队先从 16 个数据源中收集 59029 条高质量的数学、科学推理问题,并筛选出最具挑战性、最具多样性、最高质****量的 1000 条,构建了 s1K 训练集。
-
这些数据的推理过程和答案由 Google Gemini Thinking API 生成,并进行质量把控。
- 训练时间仅 26 分钟
-
在 Qwen2.5-32B-Instruct 预训练模型上进行监督微调(SFT)。
-
训练仅使用 16 张 NVIDIA H100 GPU,耗时 26 分钟,成本不到 50 美元。
3. 测试时推理优化(Test-Time Scaling)
-
提出了**预算控制(Budget Forcing)**方法,在测试时调整推理时间:
-
如果模型推理太快:增加“Wait”提示,让模型思考更长时间,提高推理准确性。
-
如果模型推理过长:强制终止,确保推理效率。
-
这种方法能在不改变训练数据的情况下提高模型的推理能力!这种方法与传统的大规模强化学习方法(RL)形成鲜明对比,后者的成本通常较高,DeepSeek、OpenAI 都采用了这种方法。而 s1 的研究通过较小的数据集和监督微调(SFT)蒸馏推理模型,大大降低了训练成本并提高了效率。
s1-32B 的惊人成绩
🔹 s1-32B 在 AIME24(数学竞赛)上比 OpenAI o1-preview 高 27%!
🔹 在 MATH500 和 GPQA 任务上,s1-32B 也接近或超过主流开源模型!
🔹 仅用 1000 条数据,s1-32B 竟然达到了 DeepSeek R1(80 万样本)的 70% 性能!
这一结果表明,高效训练+测试时优化可以让模型在极少数据的情况下达到强大的推理能力!
为什么 s1-32B 能成功?
1️⃣ 小样本精炼训练:传统模型用几十万甚至上百万的数据训练,而 s1-32B 仅用 1000 条精心挑选的数据,避免了冗余和低效学习。
2️⃣ 测试时优化策略:Budget Forcing 技术让模型在推理时“思考更久”,在无需额外训练的情况下提升推理表现。
3️⃣ 模型基础足够强:Qwen2.5-32B 作为基础模型,已经具备一定的推理能力,微调可以迅速“激活”其潜能。
这种方法不仅节省训练资源,还能够让开源社区更容易复现和优化强大 AI!
未来的影响
✅ 更低成本的 AI 训练:s1-32B 证明,未来我们可能不再需要天价算力,也能训练出强大 AI。
✅ 开源 AI 的新希望:这项研究完全开源(GitHub 链接见文末),意味着更多人可以利用这些方法开发更强的 AI。
✅ AI 推理能力的新方向:测试时优化(Test-Time Scaling)将成为提升 AI 推理能力的新策略,而不是单纯依赖预训练大数据。
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
