OpenAI 做 Agent,得天独厚。
今天凌晨,奥特曼突然发文宣布推出自家最新的 o 系列模型:满血版 o3 和 o4-mini,同时表示这两款模型都可以自由调用 ChatGPT 里的各种工具,包括但不限于图像生成、图像分析、文件解释、网络搜索、Python。
总的来说,就是比前一代的性能更强而且价格更低。
消息一出,马上就有网友晒出了两个模型的“小球测试”结果,并配文:“这确实是迄今为止看到的最好的测试结果了。”
也有网友晒出了满血版 o3 和 o4-mini 在 HLM 基准的中的排名,其中 OpenAI 的两款新模型仅用了几个小时的时间就稳稳的“盘”上了榜单前三,引得网友大呼震惊。
1
o3 与 o4 mini 全面进化
除了网友们的测评结果外,我们也来看一下 OpenAI 给出的两个模型的官方数据。
首先,o3 在多个基准测试中表现优异,包括 Codeforces、SWE-bench 和 MMMU 等,刷新了多项纪录。除此之外,o3 在应对复杂现实任务时,比 OpenAI o1 减少了 20% 的重大错误,尤其在编程、商业咨询和创意构思领的方面能力最为突出。
o4 mini 这边,别看它体量不大,但专为快速、高效的推理任务而设计,可以支持比 o3 更高的使用频率。
在数学、编程和视觉任务上的表现依然非常亮眼。在 2025 年 AIME 数学竞赛中,借助 Python 解释器的帮助,o4-mini 取得了99.5%的高分,几乎达到了该测试的满分水平。专家评估同样显示,它在非 STEM 任务以及数据科学领域的表现已经超越了 o3-mini。
此外,o3 和 o4-mini 首次实现了将图像直接融入思维链的能力,它们不仅“看得见”图像,更能“通过图像思考”。这带来了视觉与文本推理的全新融合方式,显著提升了它们在多模态任务中的表现。
关于这点,OpenAI 图像推理研究员 Jiahui Yu 发文称:“自最初推出 o 系列以来,“图像思考”始终是我们在感知领域的核心战略之一。早期发布的 o1 vision,曾为这一方向提供了初步的探索与预览;而如今,随着 o3 和 o4-mini 的发布,这一战略终于以更为成熟和完整的形式落地。多模态能力的持续演进,不仅推动了模型在理解世界方式上的跃升,也成为 OpenAI 实现 AGI 愿景中不可或缺的关键一环。”
模型性能毋庸置疑,而关于这两款模型可以自由调用 ChatGPT 里的各种工具的能力,OpenAI 首席研究官 Mark Chen 也发文表示:一旦推理模型学会了端到端地使用工具,它们就会变得更加强大,而最新的 o 系列模型正在“向未来迈出的质的一步”。
所谓“质的一步”,无非是将大模型的能力扩展到目前最火的 Agent 领域,值得一提的是,这已经不是 OpenAI 第一次向 Agent 领域进发了。
今年年初,OpenAI 接连推出 Operator 和 Deep Research 两个产品宣告向 Agent 进发,在此之前,他们还推出过一个类似于代办助手的 Agent 产品 —— ChatGPT tasks,来试了试水花。
而这次的满血版 o3 和 o4 mini 则是支持直接调用 ChatGPT 里的各种工具,从之前的“聪明大脑”直接进化为了“灵巧双手”。
有网友在试过了 o3 最新模型的调用能力后表示,模型帮他做了一些需要跨工具才能完成的工作,这让他感觉到了 Agent 给人们带来的便捷。
2
OpenAI 做 Agent,得天独厚
关于如何才能做出真正的 Agent,目前坊间的主流观点是:强化学习加基座模型。
但在 Agent 的实际研发中,大多数专注于 Agent 的公司并不具备自研基座模型的能力,能够组建强化学习团队的更是凤毛麟角。它们唯一的机会,往往在于依靠强悍的工程能力持续打磨产品体验,或通过差异化定位,探索某些功能层面的创新。
然而,由于缺乏底层模型的掌控权,这样的努力终究只是为自己在与大模型公司的赛道上争取些许缓冲时间。正因如此,那些具备训练基础模型能力的公司,在开发 Agent 时,往往能够实现事半功倍的效果,占据天然优势。
巧合的是,Deep Research 团队曾在多次访谈中强调,他们认为基于强化学习的端到端训练是当前 Agent 技术变革的关键所在,原因在于强化学习能够有效突破传统 AI 系统在复杂场景中面临的灵活性不足和泛化能力受限的问题。
在此基础上,叠加 OpenAI 本身在基础模型上的强大优势,或许不久之后,Agent 就会被吃进 ChatGPT 的某个版本之中。
一位长期从事 Agent 方向的研究人员曾对 AI 科技评论表示:“用强化学习训练 Agent,本质上更像是将语言模型的能力在特定环境中进行定向强化和适配。也就是说,强化学习更多是在帮助语言模型在某一特定场景中“训得很好”。然而,目前许多学术研究仍停留在使用较基础的 base model 进行环境内训练,这样的工作即便做到极致,其成果也往往只是某个环境下的“特化版本”,难以实现跨环境的泛化能力,因此其实际意义和应用价值仍然有限。”
顺着这个点往下看,不难发现其实 OpenAI 已经同时掌握了基础模型和训练方式,拥有从底层能力到上层产品的完整控制权,也因此在定价方便拥有了更大的自主权。
例如,Deep Research 的 Agent 以每月 200 美金的价格对外订阅,全部收入可以留在体系内部,而那些依赖第三方模型的独立 Agent 团队,不仅受到 API 成本和模型性能波动的限制,在产品定价上也显得捉襟见肘。
“略知皮毛”不如洞彻本质,“套壳”并不是长久之计,这么一看,OpenAI 做 Agent,就得天独厚。
3
开源 Codex CLI
新模型之外,OpenAI 还开源了一款本地代码智能体:Codex CLI。它是一个轻量级的编码助手,可直接在用户的终端命令行中运行,为的是充分发挥 o3、o4-mini 等模型的推理能力,紧密连接本地开发环境,未来还会支持 GPT 4.1 等其他模型。
值得一提的是,它甚至支持通过截图或手绘草图进行多模态编程,直接刷新了代码交互与内容理解的边界。
为了测试这个功能,在发布会的直播中,开发人员还现场用 Codex CLI 展示了一波实施摄影的 ASCII 画面,让不少直播间网友大呼:“Intresting!”
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】