编码能力一直是顶尖模型宣传的重点。
尤其是,AI大神Karpathy带火vibe coding(氛围编程)概念后,普通人也可以通过AI体验到编程的乐趣。
游戏、网页、3D建模,再加上最近爆火的MCP协议,大家玩得不亦乐乎。
不只是娱乐,很多AI专家、公司CEO、行业分析师甚至认为,AI可能会在2-3年内取代绝大部分的程序员。
AI编程真的有那么强吗?哪家的效果更好?
就在最近,网友RameshR通过高尔顿板(Galton board)测试,对比了Gemini 2.5 Flash、GPT-4o mini、o4-mini-high及o3等几个最新的模型。
结果他发现,Gemini 2.5 Flash在这项高尔顿板测试中表现炸裂,而OpenAI的几个模型则完全不行,没能搞定这个任务。
RameshR表示,Gemini 2.5 Flash几乎瞬间就能get到意图,生成的代码简洁又漂亮。
在Gemini 2.5 Flash上,他一共提示5次就搞定了。而在OpenAI的模型上,RameshR则折腾了半小时都没有完成,最后直接选择放弃。
可以看出,Gemini 2.5 Flash生成的动画中,整个高尔顿板的排布都没有明显的问题,小球的运动、碰撞也基本符合物理规律。
当然,最后小球的排列也是遵循正态分布。
RameshR的高尔顿板测试帖子发出后立即点燃了网友们的兴致,就连谷歌的首席科学家Jeff Dean也出来给他点赞。
当然,也是为了给Gemini 2.5 Flash站台。
资深工程师Ray Fernando使用相同的提示词在o4-mini-high上进行了测试,结果表现还是不太完美。
他不得不又在GPT-4.1上重新试了一次,表现还是差强人意。
图片下边柱子和固定的小球已经重合到一起了,小球的排列也不符合正态分布的规律。
还有网友使用其他的模型做了测试,比如Alex Kotenko就使用了Claude 3.7。
他表示在使用了相同的初始提示和一次后续调整就完成了测试。只不过从结果来看,小球的排列并不怎么符合正态分布。
而Isaac Naor则使用Gork模型一次就完成了测试。
可以看出Gork模型生成的动画在界面和小球的运动上表现还可以。
但小球最后的排列并不太符合正态分布规律,距离Gemini 2.5 Flash还有差距。
谷歌正势如破竹
这还只是Gemini 2.5 Flash的表现,Gemini 2.5 Pro的效果只会更好。
谷歌DeepMind正势如破竹!在第七代TPU Ironwood的加持下,Gemini模型不仅性能很强,性价比也格外的高。
谷歌似乎是找到了最佳编码模型的秘密。
刚刚,网友AshutoshShrivastava发帖称,谷歌又又又推出了一个新模型「dayhush」,已在网页开发领域上线。
更加夸张的是,这个新模型似乎比Gemini 2.5 Pro更出色。他还提供了新模型的一些更详细信息。
| |
测试过「dayhush」的网友Taro Bushidō表示,「这将是对AI编码的一次地震性转变。」
网友MuffinV也认为,Dayhush是一个大的飞跃。
它的思考时间更长,效果也最好,而且目前没有任何其他模型能达到这种水平。
他使用Dayhush模型创建了一些知名网站,效果非常棒。
「没有任何模型能够如此精确地创建youtube和spotify的用户界面。」他说。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】