本地大模型编程实战用智能体(Agent)实现基于SQL数据构建问答系统

本文将用 `智能体(Agent)`  实现对 `SQLite` 数据库的查询:用户用自然语言提出问题,智能体也用自然语言根据数据库的查询结果回答问题。

> 本次将分别在英文、中文环境下,使用 `qwen2.5` 、 `MFDoom/deepseek-r1-tool-calling:7b` 以及 `llama3.1` 做实验。

准备

您可以按下面的步骤准备本地编程环境。

1. 计算机  

本文涉及的代码可以在**没有显存**的环境中执行。建议最低配置为:  

- CPU: Intel i5-8400 2.80GHz  

- 内存: 16GB  

2. Visual Studio Code 和 venv

`Visual Studio Code` 是很受欢迎的开发工具,建议用 `venv` 创建虚拟环境, 详见:  

[在Visual Studio Code中配置venv]

(http://wfcoding.com/articles/practice/0101%E5%9C%A8visual-studio-code%E4%B8%AD%E9%85%8D%E7%BD%AEvenv/)。

3. Ollama

基于 `Ollama` 平台,我们可以在本地方便的使用 `llama3.1`、`qwen2.5`、`deepseek` 等各种 `LLM(大语言模型)`。详见:  

[在langchian中使用本地部署的llama3.1大模型]

创建 `SQLite`

我们直接使用之前创建好的 `SQLite` 数据库:

# 获取当前执行的程序文件的文件夹路径current_folder = os.path.dirname(os.path.abspath(__file__))
db_file_path = os.path.join(current_folder, 'assert/Chinook.db')
from langchain_community.utilities import SQLDatabase
db = SQLDatabase.from_uri(f"sqlite:///{db_file_path}")

智能体(Agent)

`LangChain` 有一个 `SQL智能体`,它提供了一种比链更灵活的与 SQL 数据库交互的方式。使用 `SQL智能体` 的主要优点是:

  • 它可以根据数据库的架构以及数据库的内容(如描述特定表)回答问题

  • 它可以通过运行生成的查询、捕获执行栈并正确地重新生成它来从错误中恢复

  • 它可以根据需要多次查询数据库以回答用户问题  

... 等等

创建 `SQLite` 工具

为了初始化智能体,我们将使用 `SQLDatabaseToolkit` 创建一组工具:

  • 创建和执行查询

  • 检查查询语法

  • 检索表描述  

... 等等​​​​​​​

def create_tools(llm_model_name):    """创建工具"""
    llm = ChatOllama(model=llm_model_name,temperature=0, verbose=True)    toolkit = SQLDatabaseToolkit(db=db, llm=llm)
    tools = toolkit.get_tools()    print(tools)
    return tools

系统提示词

我们来创建指导智能体的中英文提示词。

- 英文版​​​​​​​

system = """You are an agent designed to interact with a SQL database.Given an input question, create a syntactically correct SQLite query to run, then look at the results of the query and return the answer.Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most 5 results.You can order the results by a relevant column to return the most interesting examples in the database.Never query for all the columns from a specific table, only ask for the relevant columns given the question.You have access to tools for interacting with the database.Only use the given tools. Only use the information returned by the tools to construct your final answer.You MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again.
DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database.
You have access to the following tables: {table_names}""".format(    table_names=db.get_usable_table_names())
system_message = SystemMessage(content=system)

- 中文版

​​​​​​​

system = """您是设计用于与 SQL 数据库交互的代理。用中文回答问题。给定一个输入问题,创建一个语法正确的 SQLite 查询来运行,然后查看查询结果并返回答案。除非用户指定他们希望获得的特定数量的示例,否则请始终将查询限制为最多 5 个结果。您可以按相关列对结果进行排序,以返回数据库中最有趣的示例。切勿查询特定表中的所有列,仅询问给定问题的相关列。您可以使用与数据库交互的工具。仅使用给定的工具。仅使用工具返回的信息来构建最终答案。在执行查询之前,您必须仔细检查查询。如果在执行查询时出现错误,请重写查询并重试。
请勿对数据库执行任何 DML 语句(INSERT、UPDATE、DELETE、DROP 等)。
您有权访问以下数据库表: {table_names}""".format(    table_names=db.get_usable_table_names())
system_message = SystemMessage(content=system)

上述提示词**对大模型生成SQL语句的行为做了比较严格的限制**,以防止生成错误的SQL破坏数据库。

初始化智能体

使用 `create_react_agent` 方法初始化智能体,定义问答方法。​​​​​​​

def ask(llm_model_name,question):    """询问智能体"""
    tools = create_tools(llm_model_name)    llm = ChatOllama(model=llm_model_name,temperature=0, verbose=True)    agent_executor = create_react_agent(llm, tools, state_modifier=system_message)
    for s in agent_executor.stream(        {"messages": [HumanMessage(content=question)]}    ):        print(s)        print("----")

**React智能体**(`React Agent`)指的是一种能自主决策和执行任务的AI智能体,它结合了大语言模型(LLM)和工具调用,可以根据环境和任务需求动态调整自己的行为。  

简单理解:

1. React = 解释 + 计算(Reason + Act)  

    - 先分析当前的任务和数据(Reason)

    - 然后做出相应的行动(Act)

2. 如何工作?

    - 先阅读输入信息

    - 决定是否调用某个工具(如数据库查询、API 调用)

    - 处理返回的结果,再次分析,继续执行任务

3. 示例:

    - 您输入:“明天的天气如何?”

    - 智能体会先思考:“这个问题需要调用天气 API。”

    - 然后它调用天气 API,获取数据后再回复你:“明天是晴天,气温 20°C。”

见证效果

下面我们出3个同样的中文、英文问题,看看这三款大模型的表现如何。  

> 当用中文提问时,系统提示词也用中文版;反之亦然。  

英文问题​​​​​​​

questions = [	"How many Employees are there?",	"Which country's customers spent the most?",	"Describe the PlaylistTrack table"]

我们先看看 `qwen2.5` 是如何思考回答 "How many Employees are there?" 的:​​​​​​​

[QuerySQLDatabaseTool(description="Input to this tool is a detailed and correct SQL query, output is a result from the database. If the query is not correct, an error message will be returned. If an error is returned, rewrite the query, check the query, and try again. If you encounter an issue with Unknown column 'xxxx' in 'field list', use sql_db_schema to query the correct table fields.", ...)]{'agent': {'messages': [AIMessage(content='',..., tool_calls=[{'name': 'sql_db_schema', 'args': {'table_names': 'Employee'}, ..., 'type': 'tool_call'}], ...)]}}----{'tools': {'messages': [ToolMessage(content='\nCREATE TABLE "Employee" (\n\t"EmployeeId" INTEGER NOT NULL, \n\t"LastName" NVARCHAR(20) NOT NULL, \n\t"FirstName" NVARCHAR(20) NOT NULL, \n\t"Title" NVARCHAR(30), \n\t"ReportsTo" INTEGER, \n\t"BirthDate" DATETIME, \n\t"HireDate" DATETIME, \n\t"Address" NVARCHAR(70), \n\t"City" NVARCHAR(40), \n\t"State" NVARCHAR(40), \n\t"Country" NVARCHAR(40), \n\t"PostalCode" NVARCHAR(10), \n\t"Phone" NVARCHAR(24), \n\t"Fax" NVARCHAR(24), \n\t"Email" NVARCHAR(60), \n\tPRIMARY KEY ("EmployeeId"), \n\tFOREIGN KEY("ReportsTo") REFERENCES "Employee" ("EmployeeId")\n)\n\n/*\n3 rows from Employee table:\nEmployeeId\tLastName\tFirstName\tTitle\tReportsTo\tBirthDate\tHireDate\tAddress\tCity\tState\tCountry\tPostalCode\tPhone\tFax\tEmail\n1\tAdams\tAndrew\tGeneral Manager\tNone\t1962-02-18 00:00:00\t2002-08-14 00:00:00\t11120 Jasper Ave NW\tEdmonton\tAB\tCanada\tT5K 2N1\t+1 (780) 428-9482\t+1 (780) 428-3457\tandrew@chinookcorp.com\n2\tEdwards\tNancy\tSales Manager\t1\t1958-12-08 00:00:00\t2002-05-01 00:00:00\t825 8 Ave SW\tCalgary\tAB\tCanada\tT2P 2T3\t+1 (403) 262-3443\t+1 (403) 262-3322\tnancy@chinookcorp.com\n3\tPeacock\tJane\tSales Support Agent\t2\t1973-08-29 00:00:00\t2002-04-01 00:00:00\t1111 6 Ave SW\tCalgary\tAB\tCanada\tT2P 5M5\t+1 (403) 262-3443\t+1 (403) 262-6712\tjane@chinookcorp.com\n*/', name='sql_db_schema',...)]}}----{'agent': {'messages': [AIMessage(content='', ..., tool_calls=[{'name': 'sql_db_query_checker', 'args': {'query': 'SELECT COUNT(*) FROM Employee'}, ..., 'type': 'tool_call'}], ...)]}}----{'tools': {'messages': [ToolMessage(content='The provided SQL query is:\n\n```sql\nSELECT COUNT(*) FROM Employee\n```\n\nThis query appears to be correct and does not contain any of the common mistakes listed. It simply counts all rows in the `Employee` table.\n\nTherefore, the final SQL query remains:\n\n```sql\nSELECT COUNT(*) FROM Employee\n```', name='sql_db_query_checker', ...)]}}----{'agent': {'messages': [AIMessage(content='', ..., tool_calls=[{'name': 'sql_db_query', 'args': {'query': 'SELECT COUNT(*) FROM Employee'}, ..., 'type': 'tool_call'}], ...)]}}----{'tools': {'messages': [ToolMessage(content='[(8,)]', name='sql_db_query', ...)]}}----{'agent': {'messages': [AIMessage(content='There are 8 employees in the database.', ...)]}}----

从上面的输出来看,智能体是一步一步推理出最终的答案的:

- QuerySQLDatabaseTool  

给出提示:此工具的输入是详细且正确的 `SQL` 查询,输出是数据库的结果。如果查询不正确,将返回错误消息。如果返回错误,请重写查询,检查查询,然后重试。如果您遇到“字段列表”中未知列“xxxx”的问题,请使用 `sql_db_schema` 查询正确的表字段。  

- agent  

生成名为 `sql_db_schema` 的 `tool_call` ,确定表名为 `Employee`。

- tools  

执行前面`tool_call`,生成名为 `sql_db_schema` 的 `ToolMessage` ,找出了表 `Employee` 的 `DML` ,并成功查询出3条信息。

- agent  

生成名为 `sql_db_query_checker` 的 `tool_call`,其中包含 SQL语句。

- tools  

验证前面 `tool_call` 中的SQL是否正确。生成名为 `sql_db_query_checker` 的 `ToolMessage`,其内容显示最终确定了正确的SQL语句。  

- agent  

生成名为 `sql_db_query` 的 `tool_call`,其中包含SQL语句:`SELECT COUNT(*) FROM Employee`  

- tools  

执行前面的 `tool_call` ,生成名为 `sql_db_query` 的 `ToolMessage` ,其中已经包含了 SQLite的返回值。

- agent  

基于前面的结果生成了最终回答。

通过上述的推理过程显示:**智能体与工具进行了多轮交互**后才给出最终回答。

下表直接列出各个大模型针对这3个问题的处理结果:

How many Employees are there?

Which country's customers spent the most?

Describe the PlaylistTrack table

qwen2.5

There are 8 employees in the database.

The country with the highest spending by customers is USA, followed by Canada, France, Brazil, and Germany.\n\nHere are the top 5 countries based on total invoice amount:\n\n1. USA - $523.06\n...

The `PlaylistTrack` table has two columns: `PlaylistId` and `TrackId`. It is a junction table used to establish a many-to-many relationship between the `Playlist` and `Track` tables...

llama3.1

There are 8 Employees.

The country's customers that spent the most are from the USA, with a total spend of $523.06.

The PlaylistTrack table contains information about the tracks in each playlist. It has two columns: PlaylistId and TrackId,...

MFDoom/deepseek-r1-tool-calling:7b

There are \\boxed{8} Employees in the database.

未推理出正确的的SQL

Alright, ..., it looks like this table has two main columns: PlaylistId and TrackId...

从上述结果来看,`qwen2.5`给出的回答最清晰全面,`llama3.1`也不错,`MFDoom/deepseek-r1-tool-calling:7b` 未能正确回答第2个问题。

中文问题​​​​​​​

questions = [	"有多少名员工?",	"哪个国家的顾客花费最多?",	"描述 PlaylistTrack 表" ]

有多少名员工?

哪个国家的顾客花费最多?

描述 PlaylistTrack 表

qwen2.5

数据库中一共有 8 名员工。

花费最多的国家及其总金额如下:\n\n1. 美国 (USA) - 总\金额: $523.06...\n\n因此,顾客花费最多的国家是美国。

PlaylistTrack` 表包含两个列:`PlaylistId` 和 `TrackId`。这两个列共同作为主键,表示播放列表和其中的歌曲之间的关系。...

llama3.1

有 8 名员工。

答案是:美国。

根据工具的输出,PlaylistTrack 表是一个连接表,它将Playlist和Track两个表关联起来。它有两个列:PlaylistId和TrackId,...

MFDoom/deepseek-r1-tool-calling:7b

未正确做答

未正确做答

未正确做答

总结

我们实现了用 `智能体(Agent)` 与 `SQlite` 对话的功能,通过中英文环境的简单对比实验发现,`qwen2.5` 表现最稳健。 

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值