面试产品经理需要注意什么?


最近面了十余位1-5年的产品经理,我这儿的通过率勉强1/3。我认为对于初阶产品经理(0-5年资),面试题几乎是开卷考试,有价值的问题跑不出一个很狭窄的范畴,于是整理了一下自己常用的面试问题如下。

我自己常用的面试套路就是1+3+1,全程40-60分钟不等。

第一个“1”,在简单的开场白之后,我会让候选人“简单”介绍一下自己。这道题一般情况下不扣分,只加分。

首先,我会强调“用几句话简单介绍一下自己”,所以唯一的扣分点是,候选人洋洋洒洒把自己的简历念一遍。出于礼貌,我一般不会打断候选人,只会在心里默默扣分。

什么样的答案是加分的呢?这道题其实我想考察的是同理心、需求出发和表达能力。

同理心,指的是你能不能带入面试官的视角,想一下面试官为什么要你自我介绍。要么是面试官刚开完一个会,需要给点时间熟悉简历;要么是面试官出于礼貌或者程序性思维,习惯性地要求自我介绍。当然还有别的原因,几乎所有原因指向的都不是一篇洋洋洒洒的大段介绍。

需求出发,指的是你能不能匹配自己的需求和面试官的需求。面试官需要一个开场,需要一个话头,以便更愉快地进入后面的对话。而你,我的朋友,你不是来聊天的,你是要尽可能表达自己有吸引力的方面的。所以,你需要有一定的技巧,把话头向对自己有利的方向引导。

表达能力,指的是在满足上述条件的前提下,你能不能既做到不“复述”简历,尽量别出现写在简历的原话(显得太刻意了),又能想办法抓住面试官的兴趣,尽可能引导面试官的注意力走向。

我在面试的时候,几乎雷打不动的开场自我介绍是:

“我叫XXX,你可以叫我二红,我是一名underground产品经理,做过应用市场工具直播社区互动游戏短视频教育方向的产品,既有大平台产品,也有不少内部创新项目。我自认为比较擅长XX方向,您看我简历里项目经历的部分,对哪段经历感兴趣我们可以展开聊聊。”

这里埋了几个引子,“我叫二红”、“underground产品经理”、“内部创新项目”、“擅长XX方向”,每一句话后面都有我准备的小故事。这里也有引导性,虽然大部分面试官都会先聊经历,但是我也遇到过有人上来先问务虚的、宏观的、假设性的问题,而我特别不擅长回答假设性的虚空问题,所以我会尽量引导他围绕我的经历来聊。

第二个“3”,是面试的主菜,我会让候选人挑一个最有成就感的项目,问三个方向的问题。

方向一,向上问,问项目价值。“讲一下你这个项目的价值”,“你们为什么要做这个项目/这个功能”。

这个问题想考察的是,候选人能不能有稍微立体一点的价值判断的方法,至少回答中能包含用户价值和商业价值。当然,这道题很难,我也会继续追问,例如“咱们详细聊一下,这个对用户的价值是什么?”、“这个对你们公司或者平台的价值是什么?”

下面还会一层一层追问下去,典型的问法就是在候选人描述完价值之后,继续问:

你们是怎么发现这个价值的?

发现这个价值之后,你们做了什么事来验证这个认知了吗?

行业内还有谁发现了这个价值,他们做的怎么样?

你怎么评估那个价值的实现程度的?如果让你设计一些指标来关注需求满足度,你会怎么设计?

这个问题难吧。当然很难,哪怕我来问自己做过的项目。

第一个原因是,很多时候一个项目直到关停那一刻,项目中也不一定有人能讲清楚项目价值。

第二个原因是,对于低年资的产品经理,绝大多数情况下他们的工作环境提供不了让他们完整思考价值的信息量。就算他们回答的好,可能是他们所在的组织很讲究方法论,或者是他的+1甚至+2的思考深度很充分。

向上问,问的是发现问题的能力。所以对于5年内的产品经理,我会放低这道题的要求,回答的时候能兼顾用户价值和商业价值,或者聊一个价值主张的时候能意识到用不止一种手段交叉验证认知,在我这里就算过关了。尽管这样,这道题答得好的人真的不多。

方向二,向下问,问解决手段。“这个项目里你最骄傲的功能是什么”,“这个项目里你最难解决的问题是什么”。

这个方向看似很具体,实际上考察点远比上面那个方向丰富。

我会考察真实性。问一个问题,从问题发现的过程,寻找解决手段的过程,怎么对比不同解决手段的优劣,上线效果怎么样,这些具体的问题聊完一圈,基本能判断这个项目是不是候选人亲自认真做的,或者有没有夸大自己在项目中的角色。

我会考察逻辑能力。上面提到的每一环尽量需要严丝合缝。比如发现了用户打车的时候有追求应答效率的需求,所以需要提高司机运力供给稳定性。那你得证明为什么司机运力稳定性会对应答效率有帮助,而不是直接用“我认为”“我觉得”跳过去。

我会考察思维立体性。一个问题最好能够有多种角度的思考交叉验证。比如你发现了用户打车追求应答效率,是通过用研问卷?访谈?自己作为乘客的切身经历?线上数据?甚至是心理学、社会行为学的正向推演?对一个问题思考的维度越多,加分越多。

我会考察解决问题的手段。在方案设计以外,能否同时具备内部视角,考虑到上下游协作方对这个任务的需求,能够灵活用上级作为资源去解决问题,是大大的加分项。

除此之外,还有一些个人审美。解决问题时如果有必要的话,自己亲手做大量枚举、案例分析的候选人,加分要远多于纯逻辑推导的候选人。在谈论过往经历时,时而眉头紧皱、时而亢奋的手舞足蹈的候选人,加分要远多于言辞克制严谨、语速平稳的候选人。

向下问,问的是解决问题的能力,我把它称之为“产品基本功”。对于5年内的产品经理,这个方向是最重要的考察项。除此之外,我认为这个问题也说明一位候选人肚子里有没有料,可能是由于他所处环境的问题,或者是他没有遇到一个好的带教老师,有些候选人在方向一上得分并不高,但是如果方向二得分很高的话,我们配合起来会很丝滑——我可以做好方向上的辅导和辅助,又省去了贴身带教基本功的麻烦,再加上他肯下功夫、肚子里有料,只是之前缺少串起来思考的视角,那么我们就会频繁遇到“一点就通”、“超出预期”的惊喜体验。

另外多说一句,之前看俞军的面试方法中,提到要关注候选人所处的环境,有可能候选人客观能力不够高,但是在他所处的环境中已经算很好的了,这种候选人是值得培养的。我自己的感受是,实际操作中我们很难这样去找分母中最大的那个分子,因为至少对我而言,了解候选人所处的环境是非常难的、不客观的。但是在方向二的沟通中,是可以直接问出来的,例如“同类的问题你周围的人会遇到吗?他们是怎么解决的?”

方向三,问职业发展。职业发展无非两个问题,“你为什么离职”,“你在下一段工作中最渴望获得什么”。

这个问题考察的是驱动动机是否与我要招的岗位匹配。简单聊一下,基本能判断一个人是成就感驱动的,还是激励驱动的。尽管一个团队里各种动机的成员最好有一个比例、动态平衡,我个人还是很容易被成就感驱动的人打动。

能进入到这个问题的候选人,在我这里基本表示面试通过了。这个方向是我来校验一下,看看这个同学跟我们团队的调性符合不符合。

但是,大家都是普通人,世界是参差的,大部分人的工作都是两三年一段,咱们也不能苛求每个人都是阳春白雪的理想主义者。我很少会因为这个问题毙人,顶多作为选择的参考因素。

最后一个“1”,是产品视野。

产品视野的问法就多了。首先在前面一堆问题中,多少也问了一部分了,例如我会问他做过的项目中,竞品是怎么做的,效果怎么样,有什么数据,怎么评估的,用户反馈如何。当然如果是他所在的组织优秀,可能会建立起严谨的竞品分析习惯,不一定是自己产品视野和习惯好。

所以最后我会补一些问题,例如让他推荐一个喜欢的产品,随后会追问下喜欢的原因。

很遗憾的是,这个问题的及格率非常非常低。

都会踩哪些坑呢?

浅尝辄止。例如说自己特别喜欢chatgpt,一问甚至连gpts都没用过,就是用chatgpt当做搜索引擎问答一下,更别提后面的技术原理还有趣味横生的广泛应用了。这类问题能延伸出任意一个方向都是加分项,例如从评价指标角度,来讲chatgpt与其他通用大模型相比效果好了多少;例如从衍生产品角度,聊聊gpt生态,甚至自己动手组装过gpts;例如从垂直应用的角度,用chatgpt写过程序;例如从用户洞察角度,聊聊大模型产品的用户反馈中,chatgpt有什么独特的特点;例如从技术原理角度,聊聊自己对大模型能力边界的理解等等,都算及格了,并且也能帮助我判断你本能的思考起点在哪里。

爱好者视角。例如说自己喜欢小宇宙,因为喜欢小宇宙的用户氛围。但是我追问是什么造成了小宇宙和喜马拉雅用户氛围的不同时,又变成了“我觉得”、“我感觉”。咱们是产品经理,当然用户洞察是很重要的能力,但也不能只洞察自己这一个用户。

再比如让他推荐产品方向的信源。一是看信息审美,二是看有没有主动学习的习惯。

再比如让他介绍下自己的兴趣。这个聊得也深了,我会看候选人是停留在“体验”兴趣这一层,还是有更高的追求。例如喜欢魂类游戏,然后对动作判定、地图设计滔滔不绝的,大概率是个考究党,适合研究复杂项目;例如喜欢魂类游戏,追求速通成绩、压等级挑战、甚至追求自己的游戏测评登上steam历史第一(正是在下),大概率遇上自己感兴趣的项目时,也是能自来卷起来的。

聊这个问题的时候,我经常会觉得很可惜。之前聊过一个工作五六年的产品经理,她甚至连自己的爱好也说不出来一个,更别提前面一塌糊涂的各种问题了。除了叹气,我还能做什么呢。

这就是我固定使用的套路,自认为对候选人的评价很少出现偏差。问题列表是很固定的,甚至是收敛在1+3+1=5个大方向下,当然是可以刻意准备的。我指的准备是指在日常工作中就留意这些问题,检查自己日常思考到不到位,而不是面试之前连编带蒙,企图蒙混过关。毕竟微表情和情绪很难骗人。

 

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值