最近一段时间,Gemini 2.5 pro对学生用户免费一年,Cursor也跟了。
一码难求的Manus也全面开放了注册,每天还会送300积分。
Genspark,纳米AI,Lovart表现不俗,
Flowith新版本内测效果惊人...
这一切,都发生在短短的一个月内!
我似乎闻到了一种味道,硝烟的味道。
不知不觉,Agent大战已经开始了。
Agent牌桌上的玩家
头部玩家
Cursor
我记得当时Claude的编程能力已经很强了,Cursor看准了其中的痛点,快速补齐了完整的编程体验,第一次让大家看到了一个AI IDE应该是什么样的。
它以“The AI Code Editor”为旗帜,用一种近乎蛮横、不讲道理的方式,将AI深度整合进集成开发环境(IDE),让无数开发者一边惊呼“卧槽,代码还能这么写!”,一边乖乖奉上自己的时间和钱包。
OpenAI、Figma、Notion、Google等公司工程师的盛赞——“Cursor is at least a 2x improvement over Copilot”
Cursor的成功,不在于它发明了什么惊天动地的基础模型——它很聪明地站在了巨人的肩膀上,它对开发者工作流那种深入骨髓的理解和近乎偏执的极致产品体验,同时强调“Feels Familiar”以及“Privacy Options”。
Cursor的成功让我们看到了AI应用侧的成功路径:专业领域知识+深度融合最强模型能力+神秘配方
Manus
一支烟花社区作为深度参与Manus从一鸣惊人到整个历程,皮皮也数次分享了关于Manus的案例拆解,技术分析,这里不再赘述,贴上链接:
https://hqexj12b0g.feishu.cn/docx/EQtldnOdHoTUKEx2Djrc6HNcnrd?from=from_parent_docs
Manus的成功彻底证实了Agent的商用价值,2025 Agent爆发元年由Manus带头冲锋。实至名归。
到现在为止,在不少竞品面前,很多能力仍旧是第一的。
重要玩家
Winsurf
- 强大的上下文与自动化功能 :借助 “Cascade 模式” 实现自动化修改和多文件协作,能实时追踪项目改动,如自动更新终端命令、支持 WSL、devcontainer 以及 Pyright 等,可降低重复劳动成本,在处理复杂项目时让 AI 能 “从你离开的地方继续” 工作。
- 自动化工作流设计 :除了传统代码补全,还注重整个工作流程的自动化,如直接操作终端、自动安装依赖、文件操作等,在大型项目或高度自动化协作场景中表现出色。其Wave 6版本新增一键部署、提交信息自动生成和对话目录等功能,进一步提升了开发效率和用户体验。
- 便宜,简单
Flowith
- 基于节点的画布界面 :提供直观的视觉工作空间,用户可以自由创建、连接、组织节点,以结构化的思维导图格式清晰可视地管理研究、讨论和想法,便于知识管理和创意整理。
- 多线程对话与协作 :支持多线程对话,用户能在单个画布上同时管理多个 AI 交互,还能邀请多个用户实时在同一画布上协同工作,提升团队协作效率。
- 高级 AI 集成 :由 GPT-4、Claude-3 Opus 等尖端语言模型驱动,可提供高质量的输出,确保信息的准确性和可靠性。
- 实时协作与互动 :用户可实时邀请他人参与编辑、沟通、互动,能即时查看团队成员的修改和更新,提高协作的实时性和效率。
- 流模式与高效的交互方式 :促进与 AI 的自由流畅、高效的对话,提升生产力和创造力,用户可以更自然地与 AI 进行交互,快速获取所需信息和灵感。
- 丰富的文件处理能力 :支持多种文件格式如 PDF、DOC、EXCEL 等,并自带 OCR 功能,可轻松提取图像或扫描文件中的文字内容,方便用户进行信息处理与数据分析。
- 知识花园功能 :将文件、笔记、网页资源转化为知识种子,通过 AI 自动分析构建关联,形成可持续生长、动态调整的知识库,帮助用户更好地整合和利用知识。
- Oracle 模式 :作为 AI 自主智能代理,可自主完成任务规划、拆解和优化,显著降低用户操作难度,提高解决复杂问题的效率。
我已经拿到最新版本Flowith内测了,效果很经验,扩充了很多能力。
有几个小功能很有想象力,超预期。大家拭目以待。
大厂玩家
Claude (Anthropic), Gemini (Google), GPT系列 (OpenAI), Qwen (阿里巴巴), DeepSeek等等。
大模型它们手握最核心的基础模型,坐拥海量数据和足够的计算资源。
它们肯定是想在Agent领域分一杯羹的。
无论是将AI Coding能力深度集成到开发工具链,还是在协作工具中嵌入Canva与白板功能,抑或是推出能够进行深度信息挖掘与分析的DeepResearch类服务,大厂们或多或少都在其现有产品矩阵中,悄无声息地植入了带有Agent的核心能力。
它们的全面入场,直接将这场战争的激烈程度和复杂度提升了好几个量级。
如果一个Agent产品的主打功能还不如一个基础模型厂商的内嵌能力,那它将快速的被淘汰。
基模大厂就像悬在一众Agent产品头上的剑,随时可能落下。
Follower
像Lovable,Genspark,纳米AI,Loveart都是表现不错的战略跟随者,赢得了不少用户的肯定。
似乎每一个成功的Agent产品,猛看上去都像是一个套壳儿,实际上仔细研究后发现它们都有自己的秘密武器。
这是最有趣也是值得让AI创业者开心的地方。
Agent Protocol愈发重要
早期的Agent间通信,可能还停留在简单的API调用、预设格式的数据交换,甚至是一些“黑箱式”的临时约定。
Agent今年开始爆发了,但是Agent之间的通信还是混战状态,现在Agent协议还处于赚吆喝的阶段,但这远远不够。
随着Agent能力的指数级增强和协作需求的日益复杂化,我们需要更高级、更标准化的通信协议。
咱们就从MCP,A2A,ANP三个最具代表性的协议来盘一盘。
MCP (Multi-Agent Communication Protocol) 的下一步是什么?
MCP只是一个起点,一个蹒跚学步的婴儿。
到目前为止虽然MCP生态是最繁荣的,不过我认为它只是虚假繁荣,从下一阶段的Agent协议来看MCP,除了可以连接大模型,Tool,Client之外没有特别突出的能力,而连接能力是任何一个协议最基础的能力,包括现在上万个MCP server、client也参差不齐。比如协议设计上对于会话管理,鉴权,底层通信协议的合理性等等。
从现实角度考虑的话,MCP可以聚焦在tool的连接及上下游的智能化上,想清楚接入MCP应该给使用者带来什么价值。
A2A (Agent-to-Agent) 生态竞争
谷歌最擅长玩儿生态,协议、卡位的技术公司了,拉齐技术标准到商业壁垒。
安卓是为了对抗苹果IOS,k8s卡了docker的位,从而建立了云原生标准。
现在的A2A,同样的配方和味道,一出场就绑定了几十家大B。
相信这块谷歌会出重拳,下一步会拉大旗,联合各大企业建立行业标准。
ANP (Agent Network Protocol) 加入W3C
ANP绝对是国人的骄傲,理想主义者的胜利,有幸跟常老师进行过不多交流,他是一个纯粹的技术人,他不止一次在各个场合ANP永远开源,不进行商业化,代码完全开源。
设计理念非常先进,很符合Agent之间鉴权,通信的需求,处处洋溢着自由的气息。
最新的消息是ANP加入了W3C,为下一步走向国际化奠定了扎实的一步,我认为目前最要紧的可以跟模型大厂合作搞点事情,跟各大Agent应用进行主动接触,看看能不能挖掘出一些好场景。
不过目前来看,这三个具有代表性的协议也不是互斥的,其实可以互相补位。
不过根据我的推测,但凡大厂推的协议,都不是奔着共存来的。
ANP其实最具自由开放精神,衷心的祝它好运!
Agent产品和Agent Protocol的关系会越来越紧密
产品是协议的最终载体和最佳试验田,稳定合理高性能的协议则是产品实现规模化、生态化的关键基石。
一个Agent产品,如果不能很好地支持主流的或具有潜力的新兴Agent Protocol,就会天然丧失很多快速跟进的可能,还要承担无关业务的中间件研发成本。
反之,那些积极拥抱、甚至主动贡献于协议标准化的产品,将获得更强的网络效应、更低的集成成本和更广阔的合作空间。这就像早期的互联网一样,只有遵循TCP/IP协议的设备,才能真正实现互联互通,共享整个网络的价值。
可以预见,未来围绕Agent Protocol的博弈,将是科技巨头们角力的又一个核心战场。
这不仅仅是技术标准的竞争,更是未来数字世界话语权和规则制定权的争夺。
这场Agent协议的激烈程度,绝不会亚于产品层面的厮杀。
兵不厌诈:同类型商品下的几种经典商业战术,Agent War里一个都不会少!
历史总是惊人地相似,太阳底下并无新鲜事。
Agent War虽然听起来充满未来感,但其背后涌动的商业逻辑和竞争手段,却能从过去的无数经典商战案例中找到熟悉的影子。
-
1. 价格战与免费增值(Freemium)
这是吸引初期用户、快速扩大市场份额、教育用户的最简单粗暴也最有效的利器。
但天下没有免费的午餐,免费的往往是最贵的。
当用户习惯被培养起来,对产品的依赖性形成之后,付费转化和更高级的增值服务就成了收割利润的关键时刻。
从免费到付费的鸿沟,是许多产品需要跨越的生死线。
-
2. 生态圈地与用户锁定(Ecosystem Lock-in)
苹果的iOS生态、微软的Windows+Office生态,都是这一战术的登峰造极者。
在Agent领域,通过构建独特的Agent技能商店(Agent Store)、开放的开发者平台、标准化的数据接口,将用户和第三方开发者深度绑定在自己的生态系统之内,形成强大的网络效应和极高的迁移壁垒。
一旦用户习惯了某个生态内的Agent协同,想要切换到另一个生态,其成本和不便将是巨大的。
-
3. 闪电战与快速迭代(Blitzscaling & Rapid Iteration)
在技术和市场格局尚未完全定型之前,用最快的速度推出产品、获取用户、收集反馈、迭代功能,以惊人的速度优势压倒反应迟缓的竞争对手。
这要求团队拥有极度敏捷的开发流程、对市场变化高度敏感的洞察力,以及敢于在不完美中前进的勇气。在AI领域,技术迭代的速度之快,让“唯快不破”的真理显得尤为重要。
-
4. 差异化竞争与垂直深耕(Differentiation & Vertical Focus)
与其在所有战线上与资源雄厚的巨头进行全面开战,不如选择一个自己最擅长、最有积累的垂直领域,深耕细作,提供远超通用型Agent的专业能力和独特价值。
Cursor在开发者工具领域的异军突起,就是这一策略的最佳证明。在某个细分领域做到极致,成为不可替代的“小巨人”,同样可以活得非常滋润。
-
5. 合纵连横与战略并购(Alliances & Acquisitions)
当自身在某些关键能力上存在短板,或者市场机会稍纵即逝时,通过与其他企业结成战略联盟,共享资源、互补优势,或者直接并购那些拥有独特技术、优秀团队或特定市场渠道的初创公司,来快速补齐短板、扩大版图。
可以预见,未来几年,Agent领域的并购案将会层出不穷,大鱼吃小鱼,快鱼吃慢鱼的戏码将不断上演。
这些被反复验证过的战术,将在Agent的战场上以新的形式重新上演,甚至变本加厉。
Agent War重要玩家可能的策略推演,谁在明修栈道,谁在暗度陈仓?
基于当前的牌面信息、各家的技术积累以及可能的商业战术,我们可以大胆地对这场Agent War中的几个重要玩家未来的战略走向,进行一番推演。
当然,这仅仅是基于现有信息的猜测,真正的战局演变,往往会超出所有人的预料。
以下内容都是我的主观推测,没有跟任何官方确认过,大家当做一个参考即可,欢迎拍砖:
- Cursor:
- 将AI能力从编码环节,向上游的需求分析、架构设计,向下游的部署运维等软件开发生命周期的更多环节渗透;
- 积极构建围绕Cursor的开发者社区和第三方插件生态,形成正反馈循环;
- 时刻警惕被大厂IDE(如VS Code, JetBrains系列)“收编”其核心功能,或者被其“像素级复刻”。Cursor必须跑得更快,更专注,更懂开发者。
- ToB,挖掘大客户;ToC是面子,ToB搞大钱
- 策略核心: 继续焊死“AI Native IDE”这扇大门,将护城河挖得更深更宽,持续优化核心开发者体验,让开发者“用了就回不去”。
- 可能行动: 进一步整合更强大的代码生成、代码理解、智能调试、甚至自动化测试能力;
- Manus
- ToB,挖掘大客户;ToC是面子,ToB搞大钱;
- 国内版Manus打出一片天,背靠阿里和Qwen,
- 通用Agent下一步应该怎么发展?Manus是风向标
- 继续提高神秘配方,长板继续做长
- 策略核心: 融了钱,有了一大批忠实用户,持续降低成本,
- 可能行动: 进一步整合更强大的代码生成、代码理解、智能调试、甚至自动化测试能力;
- Windsurf
- 充分利用其已有的多IDE插件基础(覆盖20+ IDEs),争取更广泛的用户覆盖面,实现“农村包围城市”;
- 在定价策略上继续保持对个人用户的友好(Individuals are free!),以吸引流量和口碑;
- 更重要的是,积极探索代码之外的Agent应用场景,例如AI辅助文档生成、AI辅助数据分析、AI辅助研究等,尝试从一个“编程助手”向一个更通用的“智能工作助手”转型,打开更大的想象空间。
- 朴实无华的价格战
- 下猛料,做些炸裂的功能出来,盘子小,可以搏一搏
- 策略核心: 凭借更名后的全新势能和品牌形象,力图在AI辅助编程这个基本盘之外,向更广泛的Agent应用领域拓展,占据一席之地。尤其是被收购后有了充足的资金和资源。
- 可能行动: 快速跟进并对标头部产品的核心功能,确保在基础体验上不掉队;
- 大厂玩家 (OpenAI, Google, Microsoft, Anthropic, 阿里巴巴等):
- OpenAI/Microsoft 阵营: 将GPT系列(无论是GPT-4还是未来的GPT-o系列)的Agent能力,以一种前所未有的深度,集成到Azure云服务、Office 365全家桶、Windows操作系统、GitHub开发者平台等微软帝国的每一个角落,打造一个无处不在、无所不能的AI助理。同时,极有可能效仿App Store模式,推动建立官方的Agent Store,试图主导Agent的分发和商业化标准。
- Google 阵营: Gemini Agent将全面融入Google搜索、Android操作系统、Chrome浏览器、Workspace办公套件等核心产品线。Google将充分利用其在多模态理解、个性化推荐算法上的积累,以及在端侧AI部署上的能力,提供高度个性化、场景化的Agent服务,让Agent更懂你。
- Anthropic: 继续高举“安全、可控、负责任的AI”大旗,其Claude系列Agent将主攻对可靠性、安全性和伦理要求极高的企业级市场和特定行业(如金融、医疗、法律)。它们可能会在Agent的可解释性、可控性方面下更多功夫。
- 国内大厂 (如阿里巴巴的Qwen通义千问, DeepSeek的深度求索等): 依托中国庞大的互联网用户基础、丰富的应用场景和独特的本土化数据优势,快速迭代自身的基础模型,推出更符合中国用户使用习惯、更能解决本土实际问题的Agent产品。主战场可能集中在智能办公、电商导购、社交娱乐、在线教育等领域,并积极探索与政务、工业等行业的结合点。
- 策略核心: 充分利用其在基础模型、海量数据、强大算力以及庞大现有生态系统上的绝对优势,实现Agent能力的全面渗透和“无处不在”。
X因素:基础模型上新的突袭
我们回顾一下,历次重大的基础模型上新的时候总会给人一种突袭感,内部产品占据优势第一时间把最新的模型能力整合到自家产品里,应用侧玩家只能用最短的时候找到最优路径跟上,昨天的aha monent今天就变成了标配。
而且模型厂商一直试图通吃从模型到应用的市场,但凡落后一步,用户马上跑了。
要说渣,AI产品用户绝对是最渣的了,哪个产品好用立马切过去,不存在忠诚感的,我自己就这样的,根据不同的case切换不同的产品,能选便宜的绝对不选贵的,能白嫖的绝不付费。
想象一下这样的场景,足以让任何一个Agent产品的CEO在深夜惊醒:
- DeepSeek突然发布了DeepSeek R2甚至R3版本,在代码生成、数学推理或某个垂直领域的理解能力上取得了SOTA(State-of-the-Art)级别的惊人突破,直接赋能其自家的Agent产品线,使其在特定任务上的表现远超竞争对手,瞬间打乱现有的竞争格局。
- OpenAI的GPT-o系列(比如传说中的GPT-4o之后的下一代,甚至GPT-5)横空出世,其逻辑推理能力、多模态交互的流畅度、超长上下文的处理能力、甚至对世界模型的理解深度,发生了颠覆性的质的飞跃。这种飞跃,可能使得现有的大部分Agent应用瞬间显得“幼稚可笑”,如同蒸汽机时代的手工作坊面对内燃机的降维打击。
- Anthropic的Claude下一个大版本,或者Google的Gemini Ultra/Pro的升级版,在Agent的自主规划能力、复杂工具的调用与协同、多轮复杂任务的拆解与执行方面,展现出令人瞠目结舌的智能水平,直接重新定义了下一代Agent所应具备的核心能力基线。
基础模型,是所有Agent产品的“大脑”和“引擎”,是它们一切智能行为的源泉。
一次关键性的、非线性的大模型迭代,就如同在已经白热化的战场上,突然投放了一颗具备战略威慑力的“核武器”,能够在一夜之间彻底改变战场的力量对比。
那些能够最快洞察、最快跟进、最深刻理解并创造性地应用最新模型特性的Agent产品团队,将获得巨大的、甚至是决定性的先发优势。
而那些反应迟钝、技术栈陈旧、无法快速消化和集成新模型能力的玩家,则很可能在一夜之间就被无情地淘汰出局,连一声叹息都来不及发出。这种由基础模型带来的高度不确定性,让Agent War的战局更加扑朔迷离,也更加惊心动魄。
One More Thing: AI Infra——看不见的军火库与生命攸关的后勤线
从大模型的预训练、指令微调、对齐,到Agent服务的推理部署、高效运行、动态编排,每一个环节都离不开强大、高效、稳定且具备成本效益的AI Infra的坚实支撑。
- GPU依然是硬通货,是AI时代的“战略石油”: 高性能GPU(如图形处理器)的供应情况、价格波动、以及获取难度,直接影响着大模型迭代的速度、训练的成本,以及最终Agent服务的定价和可获得性。谁掌握了更优质、更充足的算力资源,谁就掌握了主动权。
- 云原生与容器技术的持续革新: 以Kubernetes(K8s)为代表的容器编排技术,在AI时代面临着全新的挑战和机遇。如何更高效地调度和管理大规模、异构的AI计算负载(例如,需要同时协调CPU、GPU、NPU以及各种专用AI芯片),如何实现Serverless AI Agent的极致弹性伸缩和成本优化,如何解决大模型推理的低延迟和高吞吐需求,这些都是AI Infra领域亟待攻克的难题。
- 模型即服务 (MaaS) 与Agent即服务 (AaaS) 的兴起: 随着AI基础设施的不断成熟和标准化,未来必然会催生出更细分、更专业的“即服务”商业模式。MaaS平台将提供预训练模型、模型微调工具、模型部署环境等服务,而AaaS平台则可能提供Agent开发框架、Agent托管运行、Agent技能市场等服务。这将极大地降低Agent开发和部署的门槛,让更多的创新者能够参与进来。
- 数据处理、向量数据库与RAG架构的进化: Agent需要实时理解和处理海量的结构化与非结构化信息。高效的RAG(Retrieval Augmented Generation,检索增强生成)架构,离不开背后强大的向量数据库(用于高效存储和检索Embedding)、高质量的数据处理流水线以及智能的知识管理系统。这方面的技术突破,将直接提升Agent的“智商”和“见识”。如果各项能力都一样的话,那这项能力是决定生死的,也非常考验技术水平。
AI Infra,就是Agent War的“军火库”和“后勤保障线”。
谁能在这方面占据技术高地,谁就能为前线的Agent产品提供源源不断的“弹药补给”、更低的运营成本和更强的竞争韧性。
AI Infra的竞争会越来越重要,将从最底层的芯片设计、到中间的AI框架、再到上层的云平台服务,每一个层面都将是硝烟弥漫,同样激烈异常。
暴论:谁会胜出?抑或是你好我好大家好的Win-Win?
我的看法是:
短期内,Cursor,Manus仍是头部,很多人觉得这俩产品都是简单的套壳,只是占了先发优势,绝对的大错特错,AI产品其实不太存在明显的先发优势,因为底层能力一直在进化,scaling law还是可行的。
无论是Cursor还是Manus都是自己特训的私有模型,大量的工程实践,
不过放眼整个Agent产品市场,恐怕很难出现一家独大、赢者通吃的局面。
更有可能出现的,是阶段性的、多点开花的交替领先,是一个动态平衡的竞争格局。
大概有这几点原因:
-
1. 用户体量与场景多样性的天然制约: Agent的应用场景实在是太广泛了,从程序员的编码调试、设计师的创意生成、科研人员的文献分析,到普通人的日程管理、出行规划、健康咨询,几乎涵盖了人类工作和生活的方方面面。不同场景对Agent能力的需求千差万别,对交互方式的偏好也各不相同。没有任何一家公司,即便是拥有最强基础模型的巨头,能够完美地理解和覆盖所有这些细分场景的需求。
-
2. 续费意愿与真实价值感知的残酷考验: 用户是否愿意为Agent服务持续付费,掏出真金白银,核心看的不是你吹嘘的技术有多牛,而是它能否真正解决我的实际问题、实实在在地提升我的工作效率、改善我的生活品质。它究竟是一个能带来持续价值的“生产力工具”,还是一个只能带来短暂新鲜感的“高级玩具”?这需要产品不断进化,持续提供超出用户预期的价值,否则用户的热情很快就会消退。
-
3. 对基础模型的深度依赖与快速消化能力的持续挑战: 正如前文所述,Agent产品的核心竞争力,在很大程度上依赖于底层基础模型的进步。谁能最快地跟进、最深刻地理解、并最具创造性地应用基础模型的新特性,谁就能在短期内获得显著的领先优势。但这种领先优势,又很可能随着下一次基础模型的重大突破而被迅速打破或转移。这对Agent产品团队的技术敏锐度、工程实现能力和快速学习能力,提出了极高的要求。
-
4. 生态博弈与标准之争的长期复杂性: Agent Protocol的制定和A2A(Agent-to-Agent)生态的建设,是一个需要长期投入、多方博弈、不断演进的复杂过程。不同的技术阵营、不同的商业联盟之间,必然会就标准的主导权、利益的分配进行长期的拉锯。这种博弈,在客观上会使得市场呈现出更加多元化、而非单一垄断的格局。
Agent市场,更像是一场艰苦卓绝的马拉松长跑,而非一蹴而就的百米冲刺。
一时的领先者需要时刻保持警惕,防止被弯道超车;
而暂时的追赶者也总有机会凭借技术突破或创新后来居上。
这场Agent War的核心看点,将长期围绕以下几个关键维度展开:
- 真实的用户体量和高频的活跃度: 而非那些虚头巴脑的注册用户数或者空洞的日活月活数据。要看有多少用户真正在核心场景下高频使用,并从中获益。
- 可持续的商业模式和强烈的用户续费意愿: 能否让用户从最初的“免费尝鲜”平稳过渡到心甘情愿的“付费依赖”,这是检验Agent产品商业价值的试金石。
- 清晰的产品定位:究竟是提升效率、创造价值的生产力工具,还是仅供娱乐消遣、可有可无的“高级AI玩具”? 前者拥有持久的生命力,后者则可能如昙花一现。
- 顶尖的技术敏锐度和卓越的工程落地能力: 能否在日新月异的基础模型浪潮中,始终保持最前沿的认知,并能以最快的速度、最高的质量,将模型的新特性巧妙地转化为实实在在的、用户可感知的产品力。
2025下半程,Agent War开始了。
刺刀,已然见红!
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】