75页哈工大多模态推理大模型最新综述:感知、推理、思考与规划

推理是智能的核心,它塑造了决策、得出结论以及在不同领域进行泛化的能力,大语言多模态推理模型(LMRMs) 作为一种有前景的范式应运而生,提出了一个全面且结构化的多模态推理研究综述,围绕一个四阶段的发展路线图展开:

  • 感知驱动的模块化推理
  • 以语言为中心的短推理
  • 以语言为中心的长推理
  • 迈向原生多模态推理模型

以及基于 OpenAI O3 和 O4-mini 的挑战性基准测试和实验案例的经验见解

在这里插入图片描述

在这里插入图片描述

一、感知驱动的模块化推理

早期多模态推理模型受限于有限的多模态数据、不成熟的神经架构和不发达的学习方法,采用模块化设计,将推理过程分解为表示、对齐、融合和推理等独立组件。

在这里插入图片描述

关键方法:

  • Modular Reasoning Networks:如NMN(Neural Module Networks)动态组装任务特定模块,用于视觉和文本特征的组合;HieCoAtt(Hierarchical Co-Attention)通过层次化跨模态注意力对齐问题语义与图像区域。
  • Vision-Language Models-based Modular Reasoning:基于ViLBERT、LXMERT等模型,通过大规模图像-文本对训练,统一多模态表示、对齐和融合过程。

局限性:这些模型的推理能力通常隐含在基础感知处理和神经计算中,难以处理复杂的多步推理场景。

二、以语言为中心的短推理

随着大规模多模态预训练模型的出现,多模态推理能力显著提升,但这些模型的推理能力主要依赖于表面模式匹配,缺乏动态假设生成和多步逻辑推理能力。

在这里插入图片描述

关键方法:

  • Prompt-based MCoT(Multimodal Chain-of-Thought):通过精心设计的提示引导模型生成逐步推理路径,如IPVR(Instruction-based Visual Reasoning)和VIC(Visual Infilling and Captioning)。

  • Structural Reasoning:通过引入结构化分解推理路径,如Multimodal-CoT(MCoT)和G-CoT(Graph-based CoT),提高模型的推理能力。

在这里插入图片描述

  • Externally Augmented Reasoning:通过引入外部工具(如搜索算法、工具增强)来扩展模型的推理能力,如HoT(Hyperedge of Thought)和RAG(Retrieval-Augmented Generation)。

img

局限性:这些方法主要依赖于语言模型的内在能力,缺乏对复杂多模态数据的处理能力,且推理深度有限。

三、以语言为中心的长推理

为了处理更复杂的多模态任务,研究者开始探索更深层次的推理能力,包括跨模态推理、多模态O1(OpenAI的O1模型)和R1(Reinforcement Learning-based Reasoning)模型。

img

关键方法:

  • Cross-Modal Reasoning:通过引入外部工具(如VisProg)和算法(如FAST和ICoT)增强模型的跨模态推理能力。

img

  • Multimodal-O1:基于OpenAI的O1模型,通过扩展推理链和引入结构化推理策略,提升模型的推理能力。

img

  • Multimodal-R1:通过强化学习(如DPO和GRPO)增强模型的规划和适应能力,如DeepSeek-R1和R1-OneVision。

img

局限性:尽管这些模型在推理深度和适应性方面取得了进展,但它们仍然依赖于语言模型的架构,对多模态数据的处理能力有限,且在实时交互和动态环境中表现不足。

四、迈向原生多模态推理模型

为了克服现有模型的局限性,研究者提出了原生多模态推理模型(Native Large Multimodal Reasoning Models, N-LMRMs)的概念,旨在实现多模态感知、生成和推理的统一架构。

img

关键能力:

  • Multimodal Agentic Reasoning:通过目标驱动的交互和动态适应,使模型能够在复杂环境中进行长期规划和学习。

img

  • Omni-Modal Understanding and Generative Reasoning:通过统一表示空间实现多模态数据的无缝融合和分析,支持跨模态生成和推理。

img

研究方向:

  • Unified Representations and Cross-Modal Fusion:开发能够处理多种模态的统一模型架构。
  • Interleaved Multimodal Long Chain-of-Thought:扩展推理链,实现多模态间的交错推理。
  • Learning and Evolving from World Experiences:通过与环境的持续交互,实现模型的动态学习和自我改进。
  • Data Synthesis:开发高质量的数据合成方法,支持模型的预训练和推理能力提升。

img

在这里插入图片描述

https://arxiv.org/pdf/2505.04921
Perception, Reason, Think, and Plan:A Survey on Large Multimodal Reasoning Models

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值