零基础小白入门AI大模型应用开发,你需要一个系统的学习路径!

随着大模型技术的飞速发展,我们正站在一个全新的技术前沿,探索着如何将这些强大的工具应用于实际问题的解决。如果你对AI大模型应用开发充满热情,那么你可以读一下这篇文章——一个系统全面的入门指南,专为渴望深入AI世界的你设计。

先来总结下整个路径图:

在这里插入图片描述


下面分步看一下要学的内容:

第一步:大模型接口 - 开启AI之门

学习大模型应用开发的第一步,必须是从大模型接口开始。你需要学习如何使用OpenAI API、百度文心一言、智谱API等接口,这些是构建AI应用的基石。

第二步:Prompt工程 - AI时代的编程语言

接下来,深入学习Prompt工程——AI时代的编程语言。你将学习如何设计有效的Prompt,如何优化它们以提高模型的响应质量,以及如何确保Prompt的安全性。这不仅仅是技术的学习,更是对AI理解的深化。

目前为止,绝大多数的AI大模型应用是否成功,都绝对依赖Prompt工程是否设计的合理。类似GitHub Copilot等非常受欢迎的AI辅助编程工具,其本质上就是一个巨大的Prompt工程。

第三步:Function Calling - 连接虚拟与现实

Function Calling的概念将带你探索如何将大模型与现实世界连接起来。你将学习如何调用外部函数,让大模型能够使用工程环境中自定义的函数或工具,这样才能将AI集成到你真实的已经存在的项目中。

这一步也非常重要,它是AI Agent智能体的基础。

第四步:RAG框架 - 减少幻觉,提升准确性,知识库问答

RAG(Retrieval-Augmented Generation)框架是当前AI大模型应用的主流技术。学习如何利用这一框架减少模型的幻觉,提升输出的准确性和可靠性,学习如何利用RAG技术搭建你自己的私域知识库问答系统。

现在的大多数AI大模型应用,都离开这个框架。

第五步:LangChain - 系统性学习AI时代的开发框架

LangChain,一个火爆AI时代的开发框架,系统性地学习它的各个模块和实战案例,有助于你更深入了解AI大模型应用开发的整体流程。其内也封装了很多的通用方法,将大大提高你开发的效率和简化你开发的过程。

第六步:可视化生产力工具 - 提升你的开发效率

与LangChain配套的可视化生产力工具LangServe、LangSmith、LangFuse,这些工具提供对AI大模型应用运行过程的可视化、Log收集、信息收集、自动化测试等能力,将极大地提升你的开发效率,让你的工作流程更加流畅。

第七步:AI Agent - 让大模型自动起来、智能起来

有了上面的基础,我们就可以深入AI Agent的世界了。可以从AutoGPT开始了解Agent的概念和具体运行理念,然后实践一些目前比较火爆的Agent框架,例如 MetaGPT、LangGraph、AgentScope等。

从环境搭建到实战应用,甚至深入源代码,我的专栏将为你展示和讲解每一个细节,欢迎大家订阅:https://blog.csdn.net/attitude93/category_12546719.html。

第八步:AI + X - 学习AI在各行各业如何应用

学习自己感兴趣的行业,看AI如何应用在这些领域,有助于让你开拓思路,在自己开发时能有更多地借鉴。

第九步:不断深入

到了这,系统入门已经完成了。接下来就可以深入研究,往高端走了。同时也可以多尝试一下其它框架,例如 LlamaIndex / AutoGen 等,多用用,在以后开发项目时会有更多地选择。

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

### 关于AI大模型学习资源和入门指南 对于希望进入AI大模型领域的新手而言,获取高质量的学习材料至关重要。一份详尽的基础教程能够帮助理解复杂的概念并提供实践指导[^2]。 #### 推荐的学习路径 - **理论基础**:掌握机器学习、深度学习的核心原理以及数学基础知识,如线性代数、概率论等。 - **工具和技术栈**:熟悉Python编程语言及其生态系统内的库,比如TensorFlow, PyTorch等框架;了解云计算平台提供的服务和支持。 - **项目实战**:参与开源社区贡献代码或完成个人项目来积累实际操作经验。尝试构建简单的神经网络,并逐步过渡到更复杂的大规模预训练模型的应用场景中去。 #### 获取优质教育资源的方式 为了便于初学者快速上手,这里特别推荐一些经过精心挑选的公开课程与文档: - **官方文档与博客**:阅读来自各大科技公司发布的技术博客文章,这些往往包含了最新的研究成果和发展趋势介绍[^1]。 - **在线教育平台**:Coursera、edX等网站提供了由顶尖大学教授讲授的相关课程,涵盖了从零开始直到高级主题的内容覆盖范围广泛。 - **社交网络交流群组**:加入LinkedIn、Reddit等相关论坛,在那里可以找到志同道合的人一起讨论问题、分享心得体验。 针对特定应用场景下的挑战——例如在嵌入式设备上的部署难题,则需额外关注轻量化架构设计思路及边缘计算解决方案的研究进展[^3]。 ```python import torch from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) print(output.last_hidden_state.shape) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值