RAG流程优化(微调)的4个基本策略

在本文中,我们将介绍使用私有数据优化检索增强生成(RAG)的四种策略,可以提升生成任务的质量和准确性。通过使用一些优化策略,可以有效提升检索增强生成系统的性能和输出质量,使其在实际应用中能够更好地满足需求。

RAG简单回顾

RAG主要有两个过程。第一个是“数据收集过程”,它收集来自不同来源的数据,将其转换为文本,将其分割成较小的、连贯的和语义相关的部分,并将结果存储在矢量数据库中。第二个是“推理过程”,它从用户查询开始,然后使用第一个过程的结果来识别相关的数据块,最后丰富模型的上下文以获得输出。

在这里插入图片描述
我们先总结RAG过程中的可以优化的关键点:

1、分块方法:优化块大小确保有意义和上下文相关的数据段。
2、嵌入模型:选择和微调模型以改进语义表示。
3、向量搜索方法:选择有效的相似度量和搜索参数。
4、提供模型的最后提示:制作有效提示以提高输出质量。

RAG的A/B测试

A/B测试可以比较每个组件具有不同配置的两个版本,确定哪个版本的性能更好。它分别运行两个版本,并根据预定义的指标测量它们的性能。那么我们如何衡量指标呢?什么指标?为了回答这个问题,我们使用了论文“RAGAS: Automated Evaluation of Retrieval Augmented Generation”种提出了三个关键指标:

真实性:检查答案中的信息是否与上下文给出的信息相匹配。如果答案所说的一切都可以直接从上下文中找到或推断出来,那么答案就是可靠的。

相关性:检查生成的答案是否完整,并直接回答所问的问题。信息是否正确无关紧要。例如,如果问题是“葡萄牙的首都是什么?”,答案是“里斯本是葡萄牙的首都”,这个答案是相关的,因为它直接回答了这个问题。如果答案是“里斯本是一个美丽的城市,有很多景点”,它可能是部分相关的,但包含了回答问题不直接需要的额外信息。这个指标确保了答案的重点和切中要害。

上下文相关性:检查上下文提供的信息在多大程度上有助于回答问题。这个指标可以确保只包括必要的和相关的细节,并删除任何额外的、不相关的、无助于直接回答问题的信息。该指标确保所提供的信息对回答问题有直接帮助,避免了不必要的细节。这个度量也被称为上下文精度。

除此以外,还添加了一个新指标:

上下文召回:这个指标衡量上下文和实际答案之间的一致性,与上下文相关性相同;但是,使用的不是生成的答案,而是实际的答案。一个基本真理是得到这个度规所必需的。为了评估这些策略的有效性,我根据ColdF的数据准备了一套10个带有实际答案的问题。

真实性和答案相关性是生成器度量标准,分别衡量幻觉和答案对问题的直接程度。
上下文相关性和上下文召回是检索度量,分别度量从向量数据库检索正确数据块和获得所有必要信息的能力。

下面开始使用LangChain来实现RAG流程,我们先安装库:

pip install ollama0.2.1 pip install chromadb0.5.0 pip install
transformers4.41.2 pip install torch2.3.1 pip install
langchain0.2.0 pip install ragas0.1.9

下面是使用LangChain的代码片段:

Import necessary libraries and modules from langchain.embeddings.base import Embeddings from transformers import

BertModel, BertTokenizer, DPRQuestionEncoder,
DPRQuestionEncoderTokenizer, RobertaModel, RobertaTokenizer from
langchain.prompts import ChatPromptTemplate from
langchain_text_splitters import MarkdownHeaderTextSplitter import
requests from langchain_chroma import Chroma from langchain import
hub from langchain_core.runnables import RunnablePassthrough from
langchain_core.output_parsers import StrOutputParser from
langchain_community.chat_models import ChatOllama from operator
import itemgetter

Define a custom embedding class using the DPRQuestionEncoder class

DPRQuestionEncoderEmbeddings(Embeddings):
show_progress: bool = False
“”“Whether to show a tqdm progress bar. Must have tqdm installed.”“”

def __init__(self, model_name: str = 'facebook/dpr-question_encoder-single-nq-base'):
    # Initialize the tokenizer and model with the specified model name
    self.tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(model_name)
    self.model = DPRQuestionEncoder.from_pretrained(model_name)

def embed(self, texts):
    # Ensure texts is a list
    if isinstance(texts, str):
        texts = [texts]

    embeddings = []
    if self.show_progress:
        try:
            from tqdm import tqdm
            iter_ = tqdm(texts, desc="Embeddings")
        except ImportError:
            logger.warning(
                "Unable to show progress bar because tqdm could not be imported. "
                "Please install with `pip install tqdm`."
            )
            iter_ = texts
    else:
        iter_ = texts

    for text in iter_:
        # Tokenize the input text
        inputs = self.tokenizer(text, return_tensors='pt')
        # Generate embeddings using the model
        outputs = self.model(**inputs)
        # Extract the embedding and convert it to a list
        embedding = outputs.pooler_output.detach().numpy()[0]
        embeddings.append(embedding.tolist())

    return embeddings

def embed_documents(self, documents):
    return self.embed(documents)

def embed_query(self, query):
    return self.embed([query])[0]

Define a template for generating prompts template = “”"

CONTEXT {context}

QUESTION Question: {question}

INSTRUCTIONS Answer the user’s QUESTION using the CONTEXT

markdown text above. Provide short and concise answers. Base your
answer solely on the facts from the CONTEXT. If the CONTEXT does not
contain the necessary facts to answer the QUESTION, return ‘NONE’.
“”"

Create a ChatPromptTemplate instance using the template prompt =

ChatPromptTemplate.from_template(template)

Fetch text data from a URL url =

“https://raw.githubusercontent.com/cgrodrigues/rag-intro/main/coldf_secret_experiments.txt”
response = requests.get(url) if response.status_code == 200:
text = response.text else:
raise Exception(f"Failed to fetch the file: {response.status_code}")

Define headers to split the markdown text headers_to_split_on = [

("#", "Header 1")  ]

Create an instance of MarkdownHeaderTextSplitter with the specified

headers markdown_splitter = MarkdownHeaderTextSplitter(
headers_to_split_on, strip_headers=False )

Split the text using the markdown splitter docs_splits =

markdown_splitter.split_text(text)

Initialize a chat model llm = ChatOllama(model=“llama3”)

Create a Chroma vector store from the documents using the custom

embeddings vectorstore = Chroma.from_documents(documents=docs_splits,
embedding=DPRQuestionEncoderEmbeddings())

Create a retriever from the vector store retriever =

vectorstore.as_retriever()

Define a function to format documents for display def

format_docs(docs):
return “\n\n”.join(doc.page_content for doc in docs)

Create a retrieval-augmented generation (RAG) chain rag_chain = (

{"context": retriever | format_docs, "question": RunnablePassthrough()}
| RunnablePassthrough.assign(context=itemgetter("context"))
| {"answer": prompt | llm | StrOutputParser(),
    "context": itemgetter("context")}  )

Invoke the RAG chain with a question result =

rag_chain.invoke(“Who led the Experiment 1?”) print(result)

使用下面代码来评估指标:

Import necessary libraries and modules import pandas as pd from datasets import Dataset from ragas import evaluate from

ragas.metrics import (
context_precision,
faithfulness,
answer_relevancy,
context_recall ) from langchain_community.chat_models import ChatOllama

def get_questions_answers_contexts(rag_chain):
“”" Read the list of questions and answers and return a
ragas dataset for evaluation “”"
# URL of the file
url = ‘https://raw.githubusercontent.com/cgrodrigues/rag-intro/main/coldf_question_and_answer.psv’

# Fetch the file from the URL
response = requests.get(url)
data = response.text

# Split the data into lines
lines = data.split('\n')

# Split each line by the pipe symbol and create tuples
rag_dataset = []

for line in lines[1:10]: # Only 10 first questions
    if line.strip(): # Ensure the line is not empty
        question, reference_answer = line.split('|')
        result = rag_chain.invoke(question)
        generated_answer = result['answer']
        contexts = result['context']

        rag_dataset.append({
            "question": question,
            "answer": generated_answer,
            "contexts": [contexts],
            "ground_truth": reference_answer
        })


rag_df = pd.DataFrame(rag_dataset)
rag_eval_datset = Dataset.from_pandas(rag_df)

# Return the lragas dataset
return rag_eval_datset

def get_metrics(rag_dataset):
“”" For a RAG Dataset calculate the metrics faithfulness,
answer_relevancy, context_precision and context_recall “”"
# The list of metrics that we want to evaluate
metrics = [
faithfulness,
answer_relevancy,
context_precision,
context_recall
]

# We will use our local ollama with the LLaMA 3 model
langchain_llm = ChatOllama(model="llama3")
langchain_embeddings = DPRQuestionEncoderEmbeddings('facebook/dpr-question_encoder-single-nq-base')

# Return the metrics
results = evaluate(rag_dataset, metrics=metrics, llm=langchain_llm, embeddings=langchain_embeddings)
return results

Get the RAG dataset rag_dataset =

get_questions_answers_contexts(rag_chain)

Calculate the metrics results = get_metrics(rag_dataset)

print(results)

如果你的代码正常运行了,应该返回下面这样的结果

{ ‘faithfulness’: 0.8611, ‘answer_relevancy’: 0.8653,
‘context_precision’: 0.7778, ‘context_recall’: 0.8889 }

前两个指标与模型相关,要改进这些指标,有必要更改语言模型或为模型提供信息的提示;后两个指标与检索相关,要改进这些指标,有必要研究文档的存储、索引和选择方式。

下面我们开始进行改进

分块

分块方法确保数据被分割成最优的检索段。对不同块大小进行实验,以在太小(缺少上下文)和太大(检索系统冗余)之间找到平衡。在基线中,我们根据每个实验对文档进行分组;这意味着实验的某些部分可能会被稀释,而不会在最终的嵌入中表现出来。解决这种情况的一种方法是使用父文档检索器。这个方法不仅检索特定的相关文档片段或段落,还检索它们的父文档。这种方法确保了相关片段周围的上下文得到保存。下面的代码用于测试这种方法:

Import necessary libraries and modules from langchain.retrievers

import ParentDocumentRetriever from langchain.storage import
InMemoryStore from langchain.text_splitter import
RecursiveCharacterTextSplitter

Create the parent document retriever parent_document_retriever =

ParentDocumentRetriever(
vectorstore = Chroma(collection_name=“parents”,
embedding_function=DPRQuestionEncoderEmbeddings(‘facebook/dpr-question_encoder-single-nq-base’)),
docstore = InMemoryStore(),
child_splitter = RecursiveCharacterTextSplitter(chunk_size=200),
parent_splitter = RecursiveCharacterTextSplitter(chunk_size=1500), )

parent_document_retriever.add_documents(docs_splits)

Create a retrieval-augmented generation (RAG) chain rag_chain_pr =

(
{“context”: parent_document_retriever | format_docs, “question”: RunnablePassthrough()}
| RunnablePassthrough.assign(context=itemgetter(“context”))
| {“answer”: prompt | llm | StrOutputParser(),
“context”: itemgetter(“context”)} )

Get the RAG dataset rag_dataset =

get_questions_answers_contexts(rag_chain_pr)

Calculate the metrics results = get_metrics(rag_dataset)

print(results)

结果如下:
在这里插入图片描述

这种改变降低了性能,通过指标我们可以看到,上下文召回率下降表明检索过程不正确,上下文没有完整的信息。真实性和答案相关性度量的变化源于复杂的上下文。所以我们需要尝试其他的分块和检索方法。

嵌入模型

嵌入模型将文本块转换为密集的向量表示。不同的模型可以在不同的主题上进行训练,选择一个正确的模型可以改进嵌入。嵌入方法的选择应考虑计算效率和嵌入质量之间的平衡。

这里比较了不同的嵌入模型,如Dense Passage Retrieval ,Sentence-BERT ,或Chroma的默认模型(“all-MiniLM-L6-v2”。每个模型都有自己的长处,在特定于领域的数据上对它们进行评估有助于确定哪个模型提供了最准确的语义表示。

我们定义一个新类“SentenceBertEncoderEmbeddings”。这个新类实现了模型Sentence-BERT模型。这个新类将取代我们之前的嵌入,“DPRQuestionEncoderEmbeddings”,

Import necessary libraries and modules import pandas as pd from

datasets import Dataset from ragas import evaluate from
ragas.metrics import (
context_precision,
faithfulness,
answer_relevancy,
context_recall ) from langchain_community.chat_models import ChatOllama from sentence_transformers import SentenceTransformer

Define a custom embedding class using the DPRQuestionEncoder class

SentenceBertEncoderEmbeddings(Embeddings):
show_progress: bool = False
“”“Whether to show a tqdm progress bar. Must have tqdm installed.”“”

def __init__(self, model_name: str = 'paraphrase-MiniLM-L6-v2'):
    # Initialize the tokenizer and model with the specified model name
    self.model = SentenceTransformer(model_name)

def embed(self, texts):
    # Ensure texts is a list
    if isinstance(texts, str):
        texts = [texts]

    embeddings = []
    if self.show_progress:
        try:
            from tqdm import tqdm
            iter_ = tqdm(texts, desc="Embeddings")
        except ImportError:
            logger.warning(
                "Unable to show progress bar because tqdm could not be imported. "
                "Please install with `pip install tqdm`."
            )
            iter_ = texts
    else:
        iter_ = texts

    for text in iter_:
        embeddings.append(self.model.encode(text).tolist())

    return embeddings

def embed_documents(self, documents):
    return self.embed(documents)

def embed_query(self, query):
    return self.embed([query])[0]

Create a Chroma vector store from the documents using the custom

embeddings vectorstore = Chroma.from_documents(documents=docs_splits,
embedding=SentenceBertEncoderEmbeddings())

Create a retriever from the vector store retriever =

vectorstore.as_retriever()

Create a retrieval-augmented generation (RAG) chain rag_chain_ce =

(
{“context”: retriever | format_docs, “question”: RunnablePassthrough()}
| RunnablePassthrough.assign(context=itemgetter(“context”))
| {“answer”: prompt | llm | StrOutputParser(),
“context”: itemgetter(“context”)})

Get the RAG dataset rag_dataset =

get_questions_answers_contexts(rag_chain_ce)

Calculate the metrics results = get_metrics(rag_dataset)

print(results)

可以看到性能也下降了。这是因为DPR具有比Sentence-BERT更高的检索精度,使其更适合我们的情况,其中精确的文档检索是至关重要的。当切换到Sentence-BERT时,“真实性”和“答案相关性”指标的显著下降突出了为要求高检索精度的任务选择合适的嵌入模型的重要性。同时也说明不同类型的RAG任务可能需要特定领域的嵌入模型。

向量搜索方法

向量搜索方法基于相似性度量检索最相关的块。常用的方法包括欧几里得(L2)距离、余弦相似度等。改变这种搜索方法可以提高最终输出的质量。

代码如下:

Import necessary libraries and modules import pandas as pd from datasets import Dataset from ragas import evaluate from

ragas.metrics import (
context_precision,
faithfulness,
answer_relevancy,
context_recall ) from langchain_community.chat_models import ChatOllama

Create a Chroma vector store from the documents # using the custom

embeddings and also changing to # cosine similarity search
vectorstore = Chroma.from_documents(collection_name=“dist”,
documents=docs_splits,
embedding=DPRQuestionEncoderEmbeddings(),
collection_metadata={“hnsw:space”: “cosine”})

Create a retriever from the vector store retriever =

vectorstore.as_retriever()

Create a retrieval-augmented generation (RAG) chain rag_chain_dist

= (
{“context”: retriever | format_docs, “question”: RunnablePassthrough()}
| RunnablePassthrough.assign(context=itemgetter(“context”))
| {“answer”: prompt | llm | StrOutputParser(),
“context”: itemgetter(“context”)})

Get the RAG dataset rag_dataset =

get_questions_answers_contexts(rag_chain_dist)

Calculate the metrics results = get_metrics(rag_dataset)

print(results)

在这里插入图片描述
可以看到“真实性”得到了提高,使用余弦相似度进行向量搜索增强了检索文档与查询的对齐,即使“上下文精度”降低了。总体上较高的“信度”和“上下文召回率”表明余弦相似度在这种情况下是一种更有效的向量搜索方法,支持向量搜索方法选择在优化检索性能方面的重要性。

输入模型的最后提示

最后的提示构造涉及到将检索到的数据集成到模型的查询中。提示符中的微小变化会显著影响结果,使其成为一个反复试验的过程。在提示中提供示例可以引导模型获得更准确和相关的输出,提示词的修改不涉及代码的改变,所以这里我们就不进行演示了

总结

优化检索增强生成(RAG是一个迭代过程,它在很大程度上取决于应用程序的特定数据和上下文。我们探讨了四种关键优化方向:细化分块方法、选择和微调嵌入模型、选择有效的向量搜索方法以及制作精确的提示。这些组件中的每一个都在提高RAG系统的性能方面起着至关重要的作用。

优化RAG的过程是需要持续的测试的,从失败中学习,以及做出明智的调整。需要采用迭代方法,才能定制出适合自己的AI解决方案,更有效地满足特定需求。还有最重要的一点成功的关键在于理解现有的数据,尝试不同的策略,并不断改进的流程。

痛点1:知识缺失

知识库缺乏必要的上下文信息,导致 RAG 系统在无法找到确切答案时,可能会提供模棱两可的错误信息,而不是直接表明其无知。这种情况下,用户可能会接收到误导性的信息,从而感到沮丧。针对这一问题,有以下两种解决方案:

解决方案一:优化数据质量

“垃圾输入,垃圾输出。” 若源数据质量不佳,比如:存在相互矛盾的信息,即便是再完美的 RAG 流程也无法从劣质数据中提炼出有价值的知识。以下提出的解决方案不仅能解决这一难题,还能应对本文中提到的其他问题。高质量的数据是确保 RAG 流程顺畅运行的关键。

以下是一些常见的数据优化策略:

1. 清除噪音和无关信息:包括移除特殊字符、停用词(比如:“the”和“a”等常见词汇)以及 HTML 标签。

2. 识别并修正错误:涉及拼写错误、打字错误和语法错误。拼写检查工具和语言模型等资源对此很有帮助。

3. 去除重复数据:消除可能干扰检索过程的重复或相似记录。

解决方案二:优化提示词设计

由于知识库信息不足,系统可能会提供看似合理却错误的答案。在这种情况下,优化提示词可以显著提升系统表现。通过使用“若你不确定答案,请表明你不知道”等提示词,可以引导大模型承认其局限,并更清晰地表达不确定性。虽然这不能确保答案的绝对正确性,但在数据优化之后,设计恰当的提示词是提高系统透明度的有效手段之一。

**2**__—

痛点2:更相关的知识没有检索出来

在初步检索阶段知识未能被检索出来。关键的文档可能没有在检索组件给出的初步结果中,导致正确答案被遗漏,大模型因此无法提供精确的响应。研究指出:“问题的答案其实就藏在文档里,只是因为它排名不够高,所以没有被呈现给用户。”针对这一问题,有以下两种解决方案:

解决方案一:调整 chunk_size 和 similarity_top_k 超参数

在 RAG 模型中,chunk_size 和 similarity_top_k 是控制数据检索效率和准确性的两个关键参数。对这些参数的调整会影响到计算效率和信息检索质量之间的平衡。

解决方案二:Rerank 重排序

在将检索结果传递给大语言模型(LLM)之前对其进行重新排序,可以显著增强 RAG 系统的性能。LlamaIndex 的笔记揭示了有无重新排序的差别:

  1. 未经重新排序直接获取前两个节点的检索结果,导致结果不够精确。

  2. 相比之下,检索前 10 个节点并利用 CohereRerank 进行重排序,然后仅返回前两个节点,可以实现更精确的检索。

       ``import os` `from llama _ index.postprocessor.cohere _ rerank import CohereRerank` `   ``api _ key = os.environ  [  "COHERE _ API _ KEY"  ]` `cohere _ rerank = CohereRerank ( api _ key=api _ key , top _ n=2 ) # return top 2 nodes from reranker` `   ``query _ engine = index.as _ query _ engine  (` `similarity _ top _ k=10 ,  # we can set a high top _ k here to ensure maximum relevant retrieval` `node _ postprocessors= [ cohere _ rerank ],  # pass the reranker to node _ postprocessors ``)` `   ``response = query _ engine.query  ( ``  "What did Sam Altman do in this essay?" ,  `` )
    
    

**3**__—

痛点3:格式错误

输出格式不正确。当大语言模型(LLM)未能遵循以特定格式(比如:表格或列表)提取信息的指令时,我们提出了以下四种解决方案:

解决方案一:优化提示词设计

为了改善提示词并解决这一问题,可以采取以下几种策略:

  1. 明确指出格式要求。

  2. 简化指令并突出关键术语。

  3. 提供具体示例。

  4. 对提示词进行迭代并追加相关问题。

解决方案二:输出解析方法

输出解析可以用于以下目的,以确保获得期望的输出格式:

  1. 为每个提示/查询提供格式化指南。

  2. 对LLM的输出进行“解析”处理。

以下是一个使用 LangChain 输出解析模块的示例代码片段,该模块可在LlamaIndex 中应用。

   ``from llama _ index.core import VectorStoreIndex , SimpleDirectoryReader` `from llama _ index.core.output _ parsers import LangchainOutputParser` `from llama _ index.llms.openai import OpenAI` `from langchain.output _ parsers import StructuredOutputParser , ResponseSchema` `   ` `# load documents , build index` `documents = SimpleDirectoryReader  (  " .. /paul _ graham _ essay/data"  ).load _ data  (  )` `index = VectorStoreIndex.from _ documents ( documents )``   ` `# define output schema` `response _ schemas =  [` `ResponseSchema  (` `name=  "Education" ,` `description=  "Describes the author's educational experience/background." , ``) ,` `ResponseSchema  (` `name=  "Work" ,` `description=  "Describes the author's work experience/background." , ``  ) ,  ``]` `   ` `# define output parser` `lc _ output _ parser = StructuredOutputParser.from _ response _ schemas  (` `response _ schemas ``)` `output _ parser = LangchainOutputParser ( lc _ output _ parser )``   ` `# Attach output parser to LLM` `llm = OpenAI ( output _ parser=output _ parser )``   ` `# obtain a structured response` `query _ engine = index.as _ query _ engine ( llm=llm )``response = query _ engine.query  ( ``  "What are a few things the author did growing up?" ,  ``)` `print ( str ( response ))

解决方案三:Pydantic 程序

Pydantic 程序是一个多功能的框架,它能够将输入的字符串转换成结构化的 Pydantic 对象。LlamaIndex 提供了几种不同类型的 Pydantic 程序:

LLM 文本补全 Pydantic 程序:这类程序负责处理输入的文本,并将其转换成用户自定义的结构化对象,这个过程结合了文本补全 API 和输出解析。

LLM 函数调用 Pydantic 程序:这些程序通过使用 LLM 函数调用 API 来处理输入文本,并将其转换成用户指定的结构化对象。

预制 Pydantic 程序:这些程序设计用于将输入文本转换成预定义的结构化对象。

以下是一个使用 OpenAI 的 Pydantic 程序的示例代码片段:

from pydantic import BaseModel` `from typing import List` `   ``from llama _ index.program.openai import OpenAIPydanticProgram` `   ` `# Define output schema ( without docstring )``class Song  (  BaseModel  ) :` `title : str` `length _ seconds : int` `   ``   ``class Album  (  BaseModel  ) :` `name : str` `artist : str` `songs : List [ Song ]``   ` `# Define openai pydantic program` `prompt _ template _ str =  """\` `Generate an example album , with an artist and a list of songs.\` `Using the movie { movie _ name } as inspiration.\ ``"""` `program = OpenAIPydanticProgram.from _ defaults  (` `output _ cls=Album , prompt _ template _ str=prompt _ template _ str , verbose= True ``)` `   ` `# Run program to get structured output` `output = program  (` `movie _ name=  "The Shining" , description=  "Data model for an album." `` )

**解决方案四:**OpenAI JSON 模式

通过OpenAI的 JSON 模式,我们可以将`response_format`设置为`{ “type”: “json_object” }`,从而激活响应的 JSON 模式。当启用 JSON 模式后,大模型将被限制仅生成可以解析为有效 JSON 对象的字符串。JSON 模式确保了输出格式的强制性,但它并不支持根据特定模式进行验证。

**4**__—

痛点4:输出不完整

回答缺失完整性。虽然部分答复没有错误,但它们并未包含所有必要的细节,即便这些信息在上下文中是可获取的。比如:当有人提问:“文档A、B和C中讨论的主要议题是什么?”为了确保回答的完整性,单独对每份文档进行查询可能更为有效。

解决方案一:查询变换

在最初的 RAG 方法中,比较类型的问题表现尤为不佳。提升 RAG 推理能力的一个有效方法是引入查询理解层——在实际将查询向量存入存储之前进行查询变换。以下是四种不同的查询变换方法:

1. 路由:保留原始查询,并识别出与之相关的合适工具子集。随后,将这些工具指定为合适的选项。

2. 查询重写:保留选定的工具,但以不同方式重新构建查询,以便在同一工具集中应用。

3. 子问题分解:将查询拆分为几个更小的问题,每个问题针对不同的工具,由其元数据来决定。

4. ReAct Agent 工具选择:基于原始查询,确定使用的工具,并制定在该工具上运行的特定查询。

请参考以下示例代码片段,了解如何应用 HyDE(假设文档嵌入)这一查询重写技术。给定一个自然语言查询,首先生成一个假设文档/答案。接着,使用这个假设文档进行嵌入搜索,而不是使用原始查询。

 `# load documents , build index` `documents = SimpleDirectoryReader  (  " .. /paul _ graham _ essay/data"  ).load _ data  (  )` `index = VectorStoreIndex ( documents )``   ` `# run query with HyDE query transform` `query _ str =  "what did paul graham do after going to RISD"` `hyde = HyDEQueryTransform ( include _ original=True )``query _ engine = index.as _ query _ engine  (  )` `query _ engine = TransformQueryEngine ( query _ engine , query _ transform=hyde )``   ``response = query _ engine.query ( query _ str )``print ( response )`

为了帮助同学们彻底掌握大模型的应用开发、LangChain、RAG、Agent、Fine-tuning 微调、预训练、Prompt Engineering、向量数据库、部署、生产化,请同学们点击以下扫描

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
在这里插入图片描述

篇幅有限,部分资料如下:
👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥《中国大模型落地应用案例集》 收录了52个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述
💥《2024大模型行业应用十大典范案例集》 汇集了文化、医药、IT、钢铁、航空、企业服务等行业在大模型应用领域的典范案例。

在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓
在这里插入图片描述

  • 9
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值