前天晚上,Elon Musk又搞事情了,开源了xAI的大模型Grok。开源到什么程度?
Grok的开源协议遵循Apache 2.0,几乎是对使用者最开放的开源协议了:
- 可商用:用户可以自由地将软件用于商业目的,不必支付许可费。
- 可修改和分发:用户可以修改源代码,并且可以在修改后的软件上施加同样的许可证进行再分发。
- 专利授权:该许可证自动授予软件用户任何专利权利,这意味着贡献者不能对软件用户提起专利诉讼。
- 保留版权和许可声明:在分发软件或其修改版本时,必须保留原有的版权声明和许可证声明。
- 不承担责任:提供一定的保障,但软件作者或贡献者不必为软件可能引起的任何损失承担责任。
一句话总结,就是你可以随便打个包做成产品卖,只需要声明一下用了它就可以了。
01
—
如何使用
目前基于Grok的聊天机器人只针对Twitter的 X Premium+会员开放,登录地址:https://grok.x.ai/。不过也不用着急,估计和ChatGPT也差不了多少,早晚会放开的。
ChatGPT也来凑个热闹,但钢铁侠在嘴活上从来就没怕过谁:
02
—
程序员的机会
大模型的高技术门槛,注定了不能像互联网一样,需要那么多开发人员。而且,前两天时间出来的AI程序员,更加增加了部分人的焦虑感。
如果程序员要参与到大模型相关的工作中,都能干什么呢?现在能看到的最好的机会就是AI****大模型应用开发。
应用场景
目前大模型应用还处于探索阶段,还没有成熟的应用。但是已经有公司在探索使用在智能客服等场景,我来看依托大模型的智能客服应用,它们的整体架构是什么样的。
从上就是一个生产可用的智能客服应用的典型架构,这里面主要包含几个点:
-
大模型的可插拔性,这个架构中大模型提供生成对话的功能,所以系统需要设计成可无感切换不同大模型的能力。
-
本地知识库接入,通过RAG技术将本地知识库离线加工清洗,在和大模型对话时,通过Prompt提供给大模型。以便生成的答案符合现有的业务。
-
向量存储,本地知识库需要转换成向量存储在向量数据库中,在用户对话时可实时查询相关知识。
-
插件支持,部分对话必须依赖数据,比如用户问我的订单发货了没有,这时候离线的知识库无法满足要求,就需要以插件的形式实时查询业务数据,提供给大模型生成回答。
以上,就是基于大模型的智能客服系统架构的关键点。这里面用到的技术,其实跟AI算法没有太大关系,程序员可在其中发挥很大的作用。
技术储备
对于程序员来说,要学习大模型的应用开发,或者入职相关岗位,需要学习如下技术:
-
大模型API的使用,这个技术门槛很低,唯一要做的就是学习一下Python。大家不要觉得这个东西技术含量不高,当别人都不会的时候你会那机会就是你的。况且能把对话接口和图片生成、插件等接口结合起来,提供针对不同大模型的抽象,还是需要一点架构功底的。
-
向量数据库知识,目前向量数据的库的选择有开源实现、也有商业化产品,PostgreSQL、ElasticSearch等也通过插件支持向量存储。懂向量数据库的选型、运维,在市面上还属于是稀缺人才。程序员如果对这个感兴趣,还是值得作为职业方向的。
-
大模型和本地知识库的交互,涉及到数据召回、重排、填充等优化技术。以便提高对话的准确性和速度,如果使用的是商业大模型,顺便还可以节约API费用,目前懂这个全套技术的人还是很少的。
-
大模型的本地部署,商用大模型虽然足够强大,但是有些项目是无法用的,比如金融项目,这时候私有大模型部署和微调就成为刚需。这个技能足够有想象空间,当然学习门槛也足够高。但是对程序员来说也没到不能学会的程度,毕竟门槛越高你的护城河越深。
03
—
总结一下
大模型出来以后,对程序员是机会也是挑战。现在AI类应用除了客服还没找到强使用场景,这时候提前入局储备技术,就是最大的机会。
当然,随着AI的程序员越来越聪明,它早晚会胜任底层程序员的工作。我们要做的就是打不过就加入,而不是等着被替代。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓