Python Langchain基础应用框架的使用

前言

Langchain代码中使用了FastApi和Streamlit框架,本文简单介绍总结一些python基础应用框架的概念和使用方式。

一、FastApi

FastAPI 是一个用于构建 API 的现代、快速(高性能)的 web 框架,专为在 Python 中构建 RESTful API 而设计。 FastAPI 使用 Python 3.8+ 并基于标准的 Python 类型提示。 FastAPI 建立在 Starlette 和 Pydantic 之上,利用类型提示进行数据处理,并自动生成API文档。 FastAPI 于 2018 年 12 月 5 日发布第一版本,以其易用性、速度和稳健性在开发者中间迅速流行起来。 FastAPI 支持异步编程,可在生产环境中运行。

首先安装依赖,FastAPI 依赖 Python 3.8 及更高版本。

!pip install fastapi
!pip install uvicorn

解决方案1
如果您希望从已经运行的async环境中运行uvicorn,请改用uvicorn.Server.serve()(将以下代码添加到您的Jupyter笔记本中的新代码单元格中并执行它):
​
复制代码
import asyncio
import uvicorn
​
if __name__ == "__main__":
    config = uvicorn.Config(app)
    server = uvicorn.Server(config)
    await server.serve()
或者,获取当前事件循环(使用asyncio.get_event_loop()),并调用loop.create_task()在事件循环内为当前线程创建一个任务:
​
复制代码
import asyncio
import uvicorn
​
if __name__ == "__main__":
    config = uvicorn.Config(app)
    server = uvicorn.Server(config)
    loop = asyncio.get_event_loop()
    loop.create_task(server.serve())
解决方案2
或者,也可以使用nest_asyncio,这允许嵌套使用asyncio.run()和loop.run_until_complete():
​
复制代码
import nest_asyncio
import uvicorn
​
if __name__ == "__main__":
    nest_asyncio.apply()
    uvicorn.run(app)

示例的接口程序:

​
from fastapi import FastAPI
from typing import Dict
 
app = FastAPI()
 
@app.get("/")
async def get_root():
    return {"message": "Hello, FastAPI!"}
 
@app.get("/users")
async def get_users():
    users = [
        {"id": 1, "name": "John"},
        {"id": 2, "name": "Jane"}
    ]
    return users
 
@app.post("/users")
async def create_user(user: Dict[str, int]):
    # 创建用户逻辑
    return {"message": "User created successfully"}
​
​
import asyncio
import uvicorn
​
if __name__ == "__main__":
    config = uvicorn.Config(app,host="0.0.0.0", port=8000)
    server = uvicorn.Server(config)
    loop = asyncio.get_event_loop()
    loop.create_task(server.serve())

二、Streamlit

快速搭建demo应用:

安装依赖:

pip install streamlit
 
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple streamlit

test.py 功能示例:

import streamlit as st
​
def sum_numbers(num1, num2):
​
    return num1 + num2
​
def main():
​
    st.title("简单的数字相加应用")
​
    num1 = st.number_input("输入第一个数字:")
​
    num2 = st.number_input("输入第二个数字:")
​
    result = sum_numbers(num1, num2)
​
    st.write("结果:", result)
​
if __name__ == '__main__':
​
    main()
​
##原文链接:https://blog.csdn.net/qq_41185868/article/details/127951597

启动程序:

streamlit run test.py

如何在jupyter中使用streamlit web应用?

Streamlit的优势:

什么情况适合用Streamlit?

作个比较

(1) 前后端都用JS: Vue + Node + someUI

(2) 前端用HTML 后端用Python: Flask、Django 等等

(3) 前后端都用Python: Streamlit、PyWebIO 等等

我为什么选择Streamlit

(1) 我需要一个GUI解决方案,能在高效率和美观之间找到平衡,并且注重开发速度和实用性;

(2) 我掌握的前端知识较少,并且没有前端设计艺术细胞;

(3) 我不需要实现太复杂的页面结构与功能;

(4) 我没有精力去涉猎学习成本较高的解决方案了(不然我为什么选择Python)……

如果我不使用Streamlit,那我就得去学习:CSS,JavaScript,Vue,Node,Bootstrap,Flask,TkInter

总的来说,streamlit 试图屏蔽掉很多前端专业知识,让用户写markdown一样写网页,代码快速生成web工具。

三、Flask

Flask 是一款使用 Python 编写的轻量级 Web 应用框架,它基于 Werkzeug WSGI 工具箱和 Jinja2 模板引擎。Flask 由 Armin Ronacher 开发,其目标是提供一个简单、灵活且易于扩展的框架,可以帮助开发人员快速构建 Web 应用程序。

安装 Flask

! pip install flask 

示例demo

from flask import Flask, request
​
app = Flask(__name__)
​
@app.route('/')
def hello():
    return 'Hello, World!'
​
@app.route('/upload', methods=['POST'])
def upload_file():
    file = request.files['file']
    file.save('uploads/' + file.filename)
    return 'file uploaded successfully'
​
if __name__ == '__main__':
    app.run(host="0.0.0.0", port=8085)
​

个人觉得使用方式和FastApi很相似,Flask和FastApi的区别是什么呢?

FastApi 相比于Flask拥有以下特性:

异步设计

Pydantic做用户数据验证

原生支持ASGI「Python Web Server Gateway Interface」

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值