3.1 引言
随着人工智能技术的飞速发展,大语言模型(LLM)、检索增强技术(RAG)和智能体(Agent)已经成为推动该领域进步的关键技术。正确理解这三者的概念及其之间的关系是面向GenAI开发的基础。下图是2024年国内的AIGC产业链企业的总结。
3.2 LLM、RAG和Agent之间的对比
|
| 大语言模型(LLM) | 检索增强生成(RAG) | 智能体(Agent) |
| — | — | — | — |
| 定义 | 大型语言模型(LLM),如GPT系列、BERT等,是利用大量文本数据训练的模型,能够生成连贯的文本、理解语言、回答问题等。 | 检索增强生成技术结合了传统的信息检索技术和最新的生成式模型。它先从一个大型的知识库中检索出与查询最相关的信息,然后基于这些信息生成回答。 | 智能体是指具有一定智能的程序或设备,能够感知环境并根据感知结果做出响应或决策的实体。它们可以是简单的软件程序或复杂的机器人。 |
| 作用 | LLM作为基础技术,提供了强大的语言理解和生成能力,是构建复杂人工智能系统的基石。 | RAG可以视为在LLM基础上的扩展或应用,利用LLM的生成能力和外部知识库的丰富信息来提供更准确、信息丰富的输出。 | 智能体可以利用LLM进行自然语言处理,通过RAG技术获得和利用知识,以在更广泛的环境中做出决策和执行任务。它们通常位于应用层级,是对LLM和RAG技术在特定环境下的集成和应用。 |
因此,可以理解为LLM是基础,RAG是在LLM基础上的进一步应用,而智能体则是综合运用LLM和RAG以及其他技术,在更复杂环境中进行交互和任务执行的实体。这种关系体现了从基础技术到应用技术再到实际应用的逐级深入。
3.3 LLM Agent架构
由于大语言模型(LLM)在处理复杂问题时特别是需要多步骤的复杂问题处理时面临的困难,因此业界提出了一些针对性的prompt解决方案,例如Chain-Of-Thought,CoT) [1]、Tree of Thoughts,ToT[2]等。
在现实世界的场景中,决策通常需要经过一系列步骤进行处理,包括观察、推理和行动。这是一个迭代的过程,直到获得最终结果。这一过程启发了现代LLM Agent的设计,这些代理通常遵循“观察-推理-行动-重复”模型,反映了人类问题解决方法。可以参考文章 ReAct: Synergizing Reasoning and Acting in Language Models[3]。
在Lilian Weng在2023年的LLM Powered Autonomous Agents[4]里给出了LLM Agent的架构,核心模块包含Planning、Memory、Tool use。
一个典型的LLM Agent的工作场景演示示意图:例如,Python REPL用于解决分析任务,若需获取最新信息,则应进行网络搜索;而当用户要求创建图像时,则可使用Dall-E3。
3.4 LLM Agent开发框架
目前,很多公司都推出了帮助开发者实现LLM Agent的开发助手,例如OpenAI’s Assistants API[5]、Langchain’s agent[6]结合Langgraph[7];Dify.ai[8]、Coze[9]等也推出了自己的Agent开发框架。
本文主要基于AWS Bedrock Agent[10] 来进行生成式AI应用开发实验演示。
3.5 AWS Bedrock Agent介绍
AWS Bedrock Agent[11]使生成式AI应用程序能够在不同系统和数据源之间执行多步骤任务。Agent利用基础模型的推理能力将用户请求分解为逻辑序列,确定所需信息,并决策调用哪些API以及执行顺序。Bedrock Agent可以通过AWS CLI、控制台或者API进行创建。Bedrock Agent包含如下模块[12]:
-
基础模型(Foundation model,FM) : 基础模型理解用户请求,将复杂任务分解为多个步骤,并通过对话收集额外信息以采取行动完成请求。
-
说明(Instructions): 编写说明来描述代理的设计用途。借助高级提示,用户可以在编排的每个步骤中为代理进一步自定义指令,并包含用于解析每个步骤输出的 Lambda 函数。
-
以下至少一项:
- Action Groups(操作组):用户可以提供以下资源来定义Agent为用户执行
的操作:OpenAPI schema或者 function deatil schema;Lambda函数(调用Agent)
- 知识库(Knowledge bases) : 将知识库与Agent进行关联,以便Agent能够查询知识库获取额外的上下文信息,从而提升Agent生成的回答质量
-
提示模版(Prompt templates): 提示模板是创建要提供给 FM 的提示的基础,AWS Bedrock agent公开了预处理、编排、知识库响应生成和后处理期间使用的默认四个基本提示模板。用户可以选择编辑这些基本提示模板,以自定义代理在其序列的每个步骤中的行为。详情参考Advanced prompts in Amazon Bedrock[13]
典型的AWS Bedrock agent编排流程如下图所示
3.6 实践示范
1. 实践一: 基于AWS Bedrock 构建企业产品知识问答助理agent
主要流程如下:
-
创建AWS Bedrock agent
-
创建知识库(Knowledge bases)
-
创建操作组(Action Groups) : AWS Lambda函数(含权限控制)以及OpenAPI Schemas[14]
-
测试Agent,测试过程中可以使用AWS Bedrock Trace events[15]进行调试
-
Agent更新部署(使用agent version和agent alias),参考Deploy an agent[16]
参考代码仓库[17]
2. 实践二:基于AWS Bedrock自建生成式AI平台(复杂应用)
主要流程如下:
-
用户在浏览器客户端发起访问请求,经过AWS CloudFront缓存并回源AWS S3获取网站静态资源
-
用户在网页端登录,通过SDK请求AWS Cognito获取登录认证授权 JWT token信息
-
用户登录后需要在前端页面根据业务需要请求相关功能时,首先调用Lambda Function Url进行相关请求的签名,携带JWT Token信息验证用户权限并获得签名后的请求header信息
-
根据业务需要,使用签名后的header请求相关服务的AWS Lambda Function URL(Model对话、Agent对话、翻译、知识库等)
-
AWS Lambda Function 根据需要使用Bedrock SDK请求Bedrock的相关功能
-
请求结果上下文记录到AWS DynamoDB的Table中
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓