LLM系列:Transfomer

前言

2017年《Attention Is All You Need》发表,Transfomer模型已成为NLP领域的首选模型。 Transfomer抛弃RNN的顺序结构,采用self-attention机制,模型可以并行化训练,而且能充分利用训练资料的全局信息。加入Transformer的Seq2Seq模型在NLP各个任务上表现显著提升。

Transformer由self-attention和FFN(Feed Forward Neural Network)组成,包括encoder、decoder各6层。Transformer核心机制是Self-Attention,本质是人类视觉注意力机制。

Attention注意力

输入序列x1,x2…xnx1,x2…xnx1,x2…xn,经过embedding后变成向量a1,a2…ana1,a2…ana1,a2…an,对于输入向量aiaiai通过矩阵Wq,Wk,WvWq,Wk,WvWq,Wk,Wv线性变换分别得到Query向量qiqiqi,Key向量kikiki,Value向量viv^ivi,简单矩阵表示即Q、K、V。

Attention最核心的公式: Attention(Q,K,V)=softmax(QKTdk)VAttention(Q,K,V)=softmax(\frac{QK^T}{\sqrt{d_k}})VAttention(Q,K,V)=softmax(dk​​QKT​)V

Attention结构如下:

image.png

image.png

以下分步骤解析公示:

1 XXTXX^TXXT是什么

self-attention最开始形态: softmax(XXT)Xsoftmax({XX^T})Xsoftmax(XXT)X

假设X=[x1T;x2T;x3T;]X=[x_1T;x_2T;x_3T;]X=[x1T​;x2T​;x3T​;],xiTx_iTxiT​是一个行向量,X是一个二维矩阵,如下图模拟XXTXX^TXXT

image.png 矩阵XXTXX^TXXT是一个方阵,里面保存每个向量与自己和其他向量的內积结果,即与其他向量相似程度。

两个向量的內积表征两个向量的夹角,表征一个向量在另一个向量的投影。投影的值越大,说明两个向量相关度越高。

2 dk\sqrt{d_k}dk​​与Softmax

假设Q、K的元素均值为0,方差为1,那么AT=QTKAT=QTKAT=QTK中元素的均值为0,方差为d(具体推导省略)。当d变得很大时,A中元素的方差也会变得很大,Softmax(A)的分布会趋于陡峭(分布方差大,分布集中在绝对值大的区域)。A中每个元素除以dk\sqrt{d_k}dk​​后,方差变为1,这使得Softmax(A)分布陡峭程度与d解耦,使得训练过程中梯度保持稳定。

Softmax操作的作用是:归一化。Softmax后数字和为1。 Softmax(z)=ez∑c=1CezcSoftmax(z)=\frac{e^z}{\sum_{c = 1}^{C} e^{z_c}}Softmax(z)=∑c=1C​ezc​ez​

3 加权求和

softmax(XXT)Xsoftmax({XX^T})Xsoftmax(XXT)X 可以用如下举例表示,取一个行向量,与X的一个列向量相乘,得到一个新的行向量(维度与X相同),表示“早”词向量经过注意力机制加权求和。

image.png

4 多头模型

什么叫多头模型?

由于不同的 Attention 的权重侧重点不一样,所以将这个任务交给不同的 Attention 一起做,最后取综合结果会更好,有点像 CNN 中的 Kernel。在Transformer的论文中指出,将 Q、K、V 通过一个线性映射后,分成 h 份,对每份进行 Scaled Dot-Product Attention 效果更好, 再把这几个部分 Concat 起来,过一个线性层的效果更好,可以综合不同位置的不同表征子空间的信息

image.png

多头attention模型的实现:

class MultiHead(nn.Module):
    def __init__(self, n_head, model_dim, drop_rate):
        super().__init__()
        self.head_dim = model_dim // n_head
        self.n_head = n_head
        self.model_dim = model_dim
        self.wq = nn.Linear(model_dim, n_head * self.head_dim)
        self.wk = nn.Linear(model_dim, n_head * self.head_dim)
        self.wv = nn.Linear(model_dim, n_head * self.head_dim)

        self.o_dense = nn.Linear(model_dim, model_dim)
        self.o_drop = nn.Dropout(drop_rate)
        self.layer_norm = nn.LayerNorm(model_dim)
        self.attention = None

    def forward(self, q, k, v, mask, training):
        # residual connect
        residual = q

        # linear projection
        key = self.wk(k)  # [n, step, num_heads * head_dim]
        value = self.wv(v)  # [n, step, num_heads * head_dim]
        query = self.wq(q)  # [n, step, num_heads * head_dim]

        # split by head
        query = self.split_heads(query)  # [n, n_head, q_step, h_dim]
        key = self.split_heads(key)
        value = self.split_heads(value)  # [n, h, step, h_dim]
        context = self.scaled_dot_product_attention(query, key, value, mask)  # [n, q_step, h*dv]
        o = self.o_dense(context)  # [n, step, dim]
        o = self.o_drop(o)

        o = self.layer_norm(residual + o)
        return o

    def split_heads(self, x):
        x = torch.reshape(x, (x.shape[0], x.shape[1], self.n_head, self.head_dim))
        return x.permute(0, 2, 1, 3)

    def scaled_dot_product_attention(self, q, k, v, mask=None):
        dk = torch.tensor(k.shape[-1]).type(torch.float)
        score = torch.matmul(q, k.permute(0, 1, 3, 2)) / (torch.sqrt(dk) + 1e-8)  # [n, n_head, step, step]
        if mask is not None:
            # change the value at masked position to negative infinity,
            # so the attention score at these positions after softmax will close to 0.
            score = score.masked_fill_(mask, -np.inf)
        self.attention = softmax(score, dim=-1)
        context = torch.matmul(self.attention, v)  # [n, num_head, step, head_dim]
        context = context.permute(0, 2, 1, 3)  # [n, step, num_head, head_dim]
        context = context.reshape((context.shape[0], context.shape[1], -1))
        return context  # [n, step, model_dim]

5 残差连接 (redidual connection)

残差网络通过加入 shortcut connections,变得更加容易被优化。包含一个 shortcut connection 的几层网络被称为一个残差块(residual block)。残差块分成两部分:直接映射部分和残差部分。 残差网络由残差块组成,一个残差块可以表示为:

image.png

残差网络有什么好处?
因为增加了 x 项,那么该网络求 x 的偏导的时候,多了一项常数 1,所以反向传播过程,梯度连乘,也不会造成梯度消失。

残差网络实现:

 def residual(sublayer_fn,x): 
      return sublayer_fn(x)+x 

5 Layer normalization

Normalization 有很多种,但是它们都有一个共同的目的,那就是把输入转化成均值为 0 方差为 1 的数据。

在把数据送入激活函数之前进行 Normalization(归一化),因为我们不希望输入数据落在激活函数的饱和区(平缓区梯度几乎为0, 造成梯度消失问题)。 如果没有BN,使用Sigmod激活函数会有严重的梯度消失问题。

Transform模型

image.png

1 编码器(encoder)

Encoder的输入:词编码矩阵I∈Rn×l×dI\in{R{n\times{l}\times{d}}}I∈Rn×l×d,位置编码矩阵P∈Rn×l×dP\in{R{n\times{l}\times{d}}}P∈Rn×l×d。n表示句子数,l表示一句话seq length,d表示词向量维度。

为什么需要位置编码矩阵? 因为 Self-Attention 计算注意力分布的时候只能给出输出向量和输入向量之间的权重关系,但是不能给出词在一句话里的位置信息,所以需要在输入里引入位置编码矩阵。 位置编码向量生成方法有很多,常见是利用三角函数对位置进行编码。

输入矩阵I+P通过线性变换生成矩阵Q、K、V,实际编程中是将输入I+P直接赋值给Q、K、V。如果输入单词长度小于最大长度需要填充0,相应引入mask矩阵。

class EncoderLayer(nn.Module):

    def __init__(self, n_head, emb_dim, drop_rate):
        super().__init__()
        self.mh = MultiHead(n_head, emb_dim, drop_rate)
        self.ffn = PositionWiseFFN(emb_dim, drop_rate)

    def forward(self, xz, training, mask):
        # xz: [n, step, emb_dim]
        context = self.mh(xz, xz, xz, mask, training)  # [n, step, emb_dim]
        o = self.ffn(context)
        return o

2 解码器(decoder)

Decoder的输入:词编码矩阵O∈Rn1×l1×dO\in{R{n_1\times{l_1}\times{d}}}O∈Rn1​×l1​×d,位置编码矩阵PO∈Rn1×l1×dPO\in{R^{n_1\times{l_1}\times{d}}}PO∈Rn1​×l1​×d。因为 Decoder 的输入是具有时顺序关系的(即上一步的输出为当前步输入)所以还需要输入 Mask 矩阵以便计算注意力分布。

class DecoderLayer(nn.Module):
    def __init__(self, n_head, model_dim, drop_rate):
        super().__init__()
        self.mh = nn.ModuleList([MultiHead(n_head, model_dim, drop_rate) for _ in range(2)])
        self.ffn = PositionWiseFFN(model_dim, drop_rate)

    def forward(self, yz, xz, training, yz_look_ahead_mask, xz_pad_mask):
        dec_output = self.mh[0](yz, yz, yz, yz_look_ahead_mask, training)  # [n, step, model_dim]
        dec_output = self.mh[1](dec_output, xz, xz, xz_pad_mask, training)  # [n, step, model_dim]
        dec_output = self.ffn(dec_output)  # [n, step, model_dim]

        return dec_output


总结Decoder和Encoder中的self-attention层区别:

1 在Decoder中,Self-Attention层只允许关注到输出序列中早于当前位置之前的单词。具体做法是:在 Self-Attention 分数经过 Softmax 层之前,屏蔽当前位置之后的那些位置(将attention score设置成-inf)。
2 Decoder Attention层是使用前一层的输出来构造Query矩阵,而Key矩阵和 Value矩阵来自于Encoder最终的输出。

3 线性层和softmax

Decoder 最终的输出是一个向量,其中每个元素是浮点数。我们怎么把这个向量转换为单词呢? 线性层和softmax完成词向量到单词的转换。

线性层就是一个普通的全连接神经网络,可以把解码器输出的向量,映射到一个更大的向量,这个向量称为 logits 向量:假设我们的模型有 10000 个英语单词(模型的输出词汇表),此 logits 向量便会有 10000 个数字,每个数表示一个单词的分数。然后,Softmax 层会把这些分数转换为概率(把所有的分数转换为正数,并且加起来等于 1)。然后选择最高概率的那个数字对应的词,就是这个时间步的输出单词。

4 损失函数

Transformer训练的时候,需要将解码器的输出和label一同送入损失函数,以获得loss,最终模型根据loss进行方向传播。

只要Transformer解码器预测了一组概率,我们就可以把这组概率和正确的输出概率做对比,然后使用反向传播来调整模型的权重,使得输出的概率分布更加接近整数输出。

以简单的用两组概率向量的的空间距离作为loss(向量相减,然后求平方和,再开方),当然也可以使用交叉熵(cross-entropy)]和KL 散度(Kullback–Leibler divergence)。

相关概念
greedy decoding和beam search
  • greedy decoding:模型每个时间步只产生一个输出。模型从概率分布选择概率最大的次,并且丢弃其他词。
  • beam search:每个时间步保留k个最高概率的输出词。举例k=1,第一个位置概率最高的两个词保留;第二个位置根据上个位置计算词的概率分布,再从中取出k=2个概率最高的词,如此重复。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
  • 30
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值