大模型系列:大模型tokenizer分词编码算法BPE理论简述和实践

前言

token是大模型处理和生成语言文本的基本单位,在之前介绍的Bert和GPT-2中,都是简单地将中文文本切分为单个汉字字符作为token,而目前LLaMAChatGLM等大模型采用的是基于分词工具sentencepiece实现的BBPE(Byte-level BPE)分词编码算法,本节介绍BBPE分词编码作为大模型系列的开篇。


内容摘要
  • 常用分词算法简述
  • 以中文LLaMA(Atom)为例快速开始BBPE
  • Byte-Pair Encoding (BPE) 原理简述
  • Byte-level BPE(BBPE)原理简述
  • 使用sentencepiece训练BPE,BBPE

常用分词算法简述

分词编码指的是将自然语言切割为最小的语义单元token,并且将token转化为数值id供给计算机进行模型学习的过程。常用的分词算法根据切分文本的颗粒度大小分为word,char,subword三类,以英文文本I am disappointed in you为例,三种方法切分结果如下

颗粒度切割方式分词结果
word单词级别分词,英文天然可以根据空格分割出单词[I, am, disappointed, in, you]
character字符级别分词,以单个字符作为最小颗粒度[I, , a, m, , d, i, s, …, y, o, u]
subword介于word和character之间,将word拆分为子串[I, am, disappoint, ed, in, you]

word方式的优点是保留住了完整的单词作为有意义的整体,相比于character语义表达更加充分,但是缺点是导致词表变大,因为罗列出单词的所有组合明显比穷举出所有字符更加困难,并且对于极少出现单词组合容易训练不充分,另外的word虽然区分出了单词,但是对于单词之间语义关系无法进一步刻画,比如英文中的cat和cats这种单复数情况。
character方法的优势在于词表小,5000多个中文常用字基本能组合出所有文本序列,但是缺点也很明显,缺乏单词的语义信息,并且分词的结果较长,增加了文本表征的成本。
subword方法平衡以上两种方法, 它可以较好的平衡词表大小和语义表达能力,本篇介绍的Byte-Pair Encoding (BPE) 和Byte-level BPE(BBPE)都属于subword方法。


以中文LLaMA(Atom)为例快速开始BBPE

Atom是基于LLaMA架构在中文文本上进行训练得到的语言模型,它对中文采用BBPE分词,整个词表包含65000个token,在HuggingFace搜索Atom-7B进行模型下载

HuggingFace Atom

Atom的分词器使用的是LlamaTokenizer,使用Python简单调用对文本进行分词如下

>>> from transformers import LlamaTokenizer
>>> tokenizer = LlamaTokenizer.from_pretrained("./Atom-7B")
>>> text = "我很开心我能和我们的团队一起工作"
>>> tokenizer.tokenize(text)
['▁我', '很开心', '我能', '和我们', '的团队', '一起', '工作']
>>> tokenizer.encode(text)
[32337, 43804, 42764, 53769, 49300, 32212, 32001]

从分词结果来看,BBPE类似jieba分词一样将中文字符进行了聚合成为一个一个的子串,而最终也是以子串整体映射到一个数值id,其中句子开头,或者文本中存在空格符,分词算法会将其替换为符号。
在LlamaTokenizer类中调用了sentencepiece来获取模型分词器,后续的分词操作也是基于sentencepiece提供的API方法

import sentencepiece as spm
...
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)

Atom-7B模型目录下的tokenizer.model为BBPE分词模型,使用sentencepiece载入该分词模型可以实现LlamaTokenizer同样的效果

# pip install sentencepiece
>>> import sentencepiece
>>> tokenizer = sentencepiece.SentencePieceProcessor()
>>> tokenizer.Load("./Atom-7B/tokenizer.model")
>>> tokenizer.encode_as_pieces(text)
['▁我', '很开心', '我能', '和我们', '的团队', '一起', '工作']
>>> tokenizer.encode(text)
[32337, 43804, 42764, 53769, 49300, 32212, 32001]

tokenizer.model分词模型可以通过手动安装谷歌的项目源码,使用命令行导出为tokenizer.vocab词表,从而得到每个token和token id的对应关系,sentencepiece命令工具安装方式如下

# download sentencepiece项目源码
$ unzip sentencepiece.zip
$ cd sentencepiece
$ mkdir build
$ cd build
$ cmake ..
$ make -j $(nproc)
$ make install
$ ldconfig -v

安装完成在环境变量下出现命令spm_export_vocab,指定分词模型地址和输出词表文本地址即可完成词表导出

$ which spm_export_vocab
/usr/local/bin/spm_export_vocab

$ spm_export_vocab \
--model=./Atom-7B/tokenizer.model \
--output=./Atom-7B/tokenizer.vocab

完成后生成tokenizer.vocab词表文件,打开词表搜索下’很开心’这个子串处在43805行,和编码结果43804一致(索引从0开始)

$ less -N tokenizer.vocab
...
43804 骑行    0
43805 很开心  0
43806 在里面  0
...

对于不在tokenizer.vocab中的生僻中文字符,BBPE会将他进行UTF-8编码用字节表示,使用字节去映射词表的token id,而不是使用UNK位置填充,这也是BBPE中Byte-level的体现

# 以生僻字’龘‘为例,对’龘‘进行UTF-8编码为字节表示
>>> "龘".encode("utf-8")
b'\xe9\xbe\x98'

>>> tokenizer.encode_as_pieces("龘")
['▁', '<0xE9>', '<0xBE>', '<0x98>']
>>> tokenizer.tokenize("龘")
[29871, 236, 193, 155]


Byte-Pair Encoding (BPE) 原理简述

BBPE是基于BPE在字节颗粒度上的拓展,两者在分词算法上没有本质区别,本节先介绍BPE分词算法。
BPE的核心思想是事先给定一个最大分词数量,针对语料文本中的每个字符token,逐步合并出现频率最高的连续的两个字符组合,形成一个新词token,直到达到目标分词数量。BPE的计算流程图如下

BPE计算流程图

  • step 1:设定最大分词词典数量vocab size,初始化一个词典
  • step 2:将语料中所有文本切成单个字符形式加入词典,并且将,,,空格符等特殊字符也加入词典
  • step 3:对已经切为字符的语料,全局统计一轮连续两个字符出现组合的频率
  • step 4:取最大频率的组合,将这两个字符合并为一个整体,将这个整体添加到词典,并且在语料中将这两个字符也同步全部替换为这个新的整体,当作一个词
  • step 5:重复step 3和step 4直到达到vocab size或者无法再合并为止
  • step 6:将最终的词典生成分词编码模型文件,比如tokenizer.model,后续的任务都以这个分词词典来切词和编码

以一个只有2行的小文本“我很开心我能和我们的团队一起工作。我很欣赏我团队”为例,来说明BPE的计算流程,事先设定vocab size为23。两句话一共包含16个字符,但是还需要加上,,以及句子开头▁四种特殊符号,将它们全部添加到词表已经有20个token,下一步对单个token进行聚合,统计出有三个组合的频率最高,分别为’▁我’,‘我很’,'团队’各出现了2次,继续添加到词表,最终刚好形成23个词,BPE算法停止

语料我很开心我能和我们的团队一起工作。我很欣赏我团队
单字符作, 们, 一, 工, 能, 队, 欣, 的, 和, 我, 心, 起, 开, 赏, 团, 很
特殊字符, , , ▁
组合字符▁我, 我很, 团队

Byte-level BPE(BBPE)原理简述

BBPE将BPE的聚合下推到字节级别的,先通过UTF-8的编码方式将任意字符转化为长度1到4个字节,1个字节有256种表示,以字节为颗粒度进行聚合,其他流程和BPE是一样的。
在BBPE训练之前,256个字节表示作为token会全部加入词典,观察Atom的tokenizer.vocab,前三个位置分别为未登录词UNK,句子开头符,句子结束符,从第四个位置开始插入了256个字节集

1 <unk>   0
2 <s>     0
3 </s>    0
4 <0x00>  0
5 <0x01>  0
...
258 <0xFE>  0
259 <0xFF>  0
...

随着字节的聚合形成原始的字符,进一步可以形成词组,最终输出到tokenizer.model的时候会转化为聚合后的字符。
在模型使用的时候对于输入的字符,如果直接存在则映射为token id,如果不存在则转化为UTF-8编码之后的字节作为单位做映射,例如前文中的’龘‘会被映射为3个token id。
BBPE的优点:可以跨语言共用词表,任意语种都可以被编码到字节进行表示,另外UTF-8编码可以在不同语言之间具有一定互通性,底层字节层面的共享来实可能能够带来知识迁移。针对稀有字符,BBPE不会为其分配专门的token id,而是使用字节级别来编码来解决OOV的问题,一定程度上控制了词表大小和解决了稀疏字符难以训练的问题。
BBPE的缺点:会使得单个中文字符被切割为多个字节表示,导致表征的成本上升,可以通过扩大vocab size来促进字节的聚合,使得更多的字符和词组被挖掘出来作为单独的token id。


使用sentencepiece训练BPE,BBPE

Python安装的包sentencepiece和源码安装的spm_train命令工具都可以完成BPE和BBPE的训练,例如以小部分《狂飙》的剧本作为语料训练分词模型,代码如下

>>> import sentencepiece as spm

>>> spm.SentencePieceTrainer.train(
    input='./data/corpus.txt',
    model_type="bpe",
    model_prefix='tokenizer',   
    vocab_size=3000, 
    character_coverage=1,  
    max_sentencepiece_length=6, 
    byte_fallback=False
)

SentencePieceTrainer的训练模式支持BPE,unigram等多种模式,当model_type为’bpe’且不开启byte_fallback,该模式为BPE,如果开启byte_fallback代表BBPE模式,byte_fallback代表是否将未知词转化为UTF-8字节表示进行编码,如果不开启则对于OOV的词会直接输出。
训练完成后在目录下会生成tokenizer.model和tokenizer.vocab两个文件,查看BPE的分词词表tokenizer.vocab如下

1 <unk>   0
2 <s>     0
3 </s>    0
4 :“      -0
5 ▁”      -1
6 安欣    -2
7 ..      -3
8 高启    -4
9 ?”      -5
10 高启强  -6

词表从上到下的顺序也蕴含了词频从高到低的关系。针对未在语料中出现过的字符分别测试下BPE和BBPE的编码结果

>>> # BPE
>>> token_model_1 = sentencepiece.SentencePieceProcessor()
>>> token_model_1.Load("./tokenizer.model")

>>> # BBPE
>>> token_model_2 = sentencepiece.SentencePieceProcessor()
>>> token_model_2.Load("./tokenizer2.model")

针对文本中未出现的’凰’字符分词编码结果如下

>>> token_model_1.encode("凰")
[882, 0]

>>> token_model_2.encode("凰")
[882, 232, 138, 179]

结论和前文一致,BPE方式对于未登陆词输出的token id为0,而BBPE如果映射不到该词会转化为3个字节表示,输出三个token id,全文完毕。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

  • 8
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值