大模型正在重塑美妆产业,但美妆企业想要真正拥抱大模型,实现大模型的自建,仍然面临很多现实问题:
1、要怎样才能拥有美妆企业的专属垂直领域大模型?
2、如何高效率、低成本地处理数据?
3、模型数据如何动态更新?
4、私有数据如何安全地接入大模型?
服务数十家美妆企业,成功交付私有化大模型后,我们发现美妆企业成功拥抱专属大模型的关键在于:
1、依托匹配的开源模型;
2、执行合适的训练方法。
一、开源大模型
众所周知,大模型的训练成本极高,在海量算力的成本压力下,OpenAI和谷歌都选择了闭源来保证自家大模型的优势地位。但是从计算机科学与人工智能的发展历程来看,开源始终对软件技术乃至IT技术发展有着巨大的推动作用。
大模型时代,Meta率先走上了开源的道路,LLaMA基座开源之后,也因其出色的性能,迅速吸引了大量开发者。Meta 更是发布了免费可商用版本 Llama 2。在美妆垂直专用领域,开发专属大模型应用时不应该从零开始,而是选择一个经过预训练的大模型作为基础,并进行指令微调以满足特定需求。美妆企业拥抱专属大模型可建立在开源大模型的基础上。
①人工智能/大模型学习路线
②AI产品经理入门指南
③大模型方向必读书籍PDF版
④超详细海量大模型实战项目
⑤LLM大模型系统学习教程
⑥640套-AI大模型报告合集
⑦从0-1入门大模型教程视频
⑧AGI大模型技术公开课名额
附开源模型汇总:
1、Meta Llama
官网:Meta Llama,Github:Meta Llama (github.com)
HF:meta-llama (Meta Llama) (huggingface.co)
2、LLaMA
论文:2302.13971 (arxiv.org)
HF Doc:LLaMA (huggingface.co)
3、Llama 2
论文:10000000_662098952474184_2584067087619170692_n.pdf (fbcdn.net)
HF Doc:Llama2 (huggingface.co)
Github:meta-llama/llama: Inference code for Llama models (github.com)
4、Llama 3
介绍:Introducing Meta Llama 3: The most capable openly available LLM to date
HF Doc:Llama3 (huggingface.co)
Github:
meta-llama/llama3: The official Meta Llama 3 GitHub site
meta-llama/llama-recipes
5、智谱 AI
开放平台官网:智谱AI开放平台 (bigmodel.cn)
SwissArmyTransformer:GitHub - THUDM/SwissArmyTransformer: SwissArmyTransformer is a flexible and powerful library to develop your own Transformer variants. 这是智谱AI所有大模型公用的 backbone 代码库。
6、Microsoft
GitHub - microsoft/torchscale: Foundation Architecture for (M)LLMs,包含DeepNorm的代码实现。
二、大模型训练
大模型在所有行业各种任务上展现了作为通用模型的潜力。但由于模型体积庞大和推理延迟高,LLMs存在效率问题,这使得它们难以在实际应用中部署。因此,在美妆企业应用场景中,仍然更青睐于在任务特定数据上训练的小型模型,因为它们具有更少的参数,易于部署,并在特定下游任务中表现良好。
然而,为了适应美妆企业特定任务,训练一个小型模型可能需要大量的人工标注数据,在许多下游任务中这种数据并不可用且注释成本高昂。这种数据效率问题使得微调小型模型变得具有挑战性。因此,需要通过大模型结合小模型联动训练,减少在特定任务上微调小型模型所需的数据量,包括知识蒸馏、数据增强、模块替换、半监督学习以及数据合成等。
附训练方法汇总:
那么,如何学习大模型 AGI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
-END-
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓