DeepSeek-R1昇腾910B满血版部署攻略:避开这些坑,快速上手!

deepseek满血版昇腾显卡部署指南,网上有很多相关的教程,但是实际操作下来发现有非常多的坑,这里记录一下部署的流程,希望给国产化部署的朋友一些帮助。

现在各大平台好多提供了deepseek-r1满血版的推理服务,在网上看到一个比较有意思的检测

是否满血的prompt,可以试一下

图片

测试一下deepseek官方的回答:

图片

再看一下使用昇腾部署的回答:

图片

昇腾官方有出一个部署指南,本文也是参考该教程进行的,虽然有很多槽点,但是依然是一个不错的参考。

模型权重

第一步是模型权重的下载,对于满血版R1这个庞然大物,如果网速不够快,下载起来还是非常麻烦的,我尝试了多个下载渠道,最终使用了魔乐社区,峰值速度达80M/s,全部下载完也就一小时左右,速度非常可观。可以看一下官方的介绍,所言非虚,推荐使用。

下载的时候需要导入一个白名单,否则自定义位置报错

from openmind_hub import snapshot_download
snapshot_download(
            repo_id="State_Cloud/DeepSeek-R1-origin",
            local_dir="xxx",
            cache_dir="xxx",
            local_dir_use_symlinks=False,
            )

然后就是权重转换了,需要将FP8的转成FP16,可以使用昇腾里DeepSeek-V3的权重转换脚本

 DeepSeek-R1在转换前权重约为640G左右,在转换后权重约为1.3T左右,记得提前规划好存储的位置,避免中断。

另外这里提一下,在部署的时候,有遇到一个错误,就是加载权重的时候,好像对软链接不支持,因此这里在下载的时候,可以关闭软链接,设置参数local_dir_use_symlinks=False即可。

对于昇腾机器的的要求,BF16的R1需要至少需要4台Atlas 800I A2(8*64G)服务器,W8A8量化版本则至少需要2台Atlas 800I A2 (8*64G) , 我在部署的时候使用的是量化版本,用的是两台Atlas 800T A2

如果不想经过上述的权重转换步骤,又需要部署W8A8的量化版本,可以直接下载社区里转换好的权重,下载量已经到了6k+,可以使用。

下载后的模型权重,需要管理一下权限,方便后续读取:

chown -R 1001:1001 /path-to-weights/DeepSeek-R1
chmod -R 750 /path-to-weights/DeepSeek-R1

镜像部分

昇腾官方出了可以直接部署的镜像,方便开发者一键启动

镜像链接:https://www.hiascend.com/developer/ascendhub/detail/af85b724a7e5469ebd7ea13c3439d48f

目前提供的MindIE镜像预置了DeepSeek-R1模型推理脚本,无需再下载模型代码

这里的镜像需要申请,通过后才能下载

图片

执行命令:

docker pull swr.cn-south-1.myhuaweicloud.com/ascendhub/mindie:2.0.T3-800I-A2-py311-openeuler24.03-lts

拉取镜像后,需要启动容器,可以使用下面的命令,与官方教程有些区别

docker run -itd --privileged  --name=deepseek-r1 --net=host \
   --shm-size 500g \
   --device=/dev/davinci0 \
   --device=/dev/davinci1 \
   --device=/dev/davinci2 \
   --device=/dev/davinci3 \
   --device=/dev/davinci4 \
   --device=/dev/davinci5 \
   --device=/dev/davinci6 \
   --device=/dev/davinci7 \
   --device=/dev/davinci_manager \
   --device=/dev/hisi_hdc \
   --device /dev/devmm_svm \
    -v /usr/local/dcmi:/usr/local/dcmi \
    -v /usr/bin/hccn_tool:/usr/bin/hccn_tool \
    -v /usr/local/sbin:/usr/local/sbin \
    -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \
     -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
     -v /usr/local/Ascend/firmware:/usr/local/Ascend/firmware \
   -v /etc/hccn.conf:/etc/hccn.conf \
   -v xxxxxx/DeepSeek-R1-weight:/workspace \
   swr.cn-south-1.myhuaweicloud.com/ascendhub/mindie:2.0.T3-800I-A2-py311-openeuler24.03-lts \
    bash

--name 容器名, -v 挂载下载好的模型

其中需要注意的地方在于,把下载好模型权重的位置,挂载到容器中,可以放到workspace目录下,这样后面部署的时候,就可以使用了 

其它的挂载盘都是常规的驱动或者工具,确保本地可以正常运行,一般是没问题的

多台服务器部署,每台服务器下载同样的模型权重,位置可以不同,但是都需要执行上述启动容器的命令,把挂载盘换一下

进入容器

启动好容器之后,接下来的操作都默认在容器中

首先便是进入容器,假设上述容器名字为deepseek-r1

docker exec -it deepseek-r1 bash

容器检查

进入容器之后,先检查一下机器的网络情况,如果有问题,可以先查一下本机是否正常 如果本机正常,容器内有问题,那应该是有些目录没有挂载好,可以问下G老师或者D老师

# 检查物理链接
for i in {0..7}; do hccn_tool -i $i -lldp -g | grep Ifname; done 
# 检查链接情况
for i in {0..7}; do hccn_tool -i $i -link -g ; done
# 检查网络健康情况
for i in {0..7}; do hccn_tool -i $i -net_health -g ; done
# 查看侦测ip的配置是否正确
for i in {0..7}; do hccn_tool -i $i -netdetect -g ; done
# 查看网关是否配置正确
for i in {0..7}; do hccn_tool -i $i -gateway -g ; done
# 检查NPU底层tls校验行为一致性,建议全0
for i in {0..7}; do hccn_tool -i $i -tls -g ; done | grep switch
# NPU底层tls校验行为置0操作
for i in {0..7};do hccn_tool -i $i -tls -s enable 0;done

配置多机多卡文件

这个文件比较关键,配置好之后,后续的MindIE推理框架也会参考这个进行启动,不需要再额外设置 

配置起来也比较简单,使用这个命令,把每张卡的ip地址记录下来

for i in {0..7};do hccn_tool -i $i -ip -g; done

每台机器都执行一次,其中,确定一台主节点

  • server_count:一共使用几台服务器,即节点数。server_list中第一个server为主节点

  • device_id:当前卡的本机编号,取值范围[0, 本机卡数)

  • device_ip:当前卡的ip地址,可通过hccn_tool命令获取

  • rank_id:当前卡的全局编号,取值范围[0, 总卡数)

  • server_id:当前节点的ip地址

  • container_ip:容器ip地址(服务化部署时需要),若无特殊配置,则与server_id相同

查看服务器的ip地址

hostname -I

查看docker容器的ip地址

docker inspect 容器id | grep "IPAddress"

如果返回为空,可能是使用和宿主机一样的网络,查看容器的网络模式

docker inspect 容器id | grep -i '"NetworkMode"'

如果返回为 "NetworkMode": "host", 则说明容器使用的是 host 网络,它没有自己的 IP,而是直接用 宿主机 IP

下面是两个节点的配置文件,对着填好ip地址即可

{
    "server_count": "2", 
    "server_list": [
        {
            "device": [
                {"device_id": "0",  "device_ip": "xxxx",  "rank_id": "0"},
                {"device_id": "1",  "device_ip": "xxxx", "rank_id": "1"},
                {"device_id": "2",  "device_ip": "xxxx",  "rank_id": "2"},
                {"device_id": "3",  "device_ip": "xxxx",  "rank_id": "3"},
                {"device_id": "4",  "device_ip": "xxxx",   "rank_id": "4"},
                {"device_id": "5",  "device_ip": "xxxx",   "rank_id": "5"},
                {"device_id": "6",  "device_ip": "xxxx",  "rank_id": "6"},
                {"device_id": "7",  "device_ip": "xxxx", "rank_id": "7"}
                ],
                "server_id": "xxxx",
                "container_ip": "xxxx"
        },
        {
            "device": [
                {"device_id": "0",  "device_ip": "xxxx",  "rank_id": "8"},
                {"device_id": "1",  "device_ip": "xxxx", "rank_id": "9"},
                {"device_id": "2",  "device_ip": "xxxx",  "rank_id": "10"},
                {"device_id": "3",  "device_ip": "xxxx",  "rank_id": "11"},
                {"device_id": "4",  "device_ip": "xxxx",   "rank_id": "12"},
                {"device_id": "5",  "device_ip": "xxxx",   "rank_id": "13"},
                {"device_id": "6",  "device_ip": "xxxx",  "rank_id": "14"},
                {"device_id": "7",  "device_ip": "xxxx", "rank_id": "15"}
            ],
            "server_id": "xxxx",
            "container_ip": "xxxx"
        }
    ],
    "status": "completed",
    "version": "1.0"
}

开启通信环境变量

export ATB_LLM_HCCL_ENABLE=1
export ATB_LLM_COMM_BACKEND="hccl"
export HCCL_CONNECT_TIMEOUT=7200
export WORLD_SIZE=32
export HCCL_EXEC_TIMEOUT=0
  • 权重目录下config.json文件,将 model_type 更改为 deepseekv2 (全小写且无空格)

精度测试

官方给的精度测试例子,与我下载的镜像中的目录对不上,并且执行full_CEval的测试也会报错,缺少文件 modeltest路径,在镜像中的实际位置是:/usr/local/Ascend/atb-models/tests/modeltest

测试命令:

# 需在所有机器上同时执行
bash run.sh pa_bf16 [dataset] ([shots]) [batch_size] [model_name] ([is_chat_model]) [weight_dir] [rank_table_file] [world_size] [node_num] [rank_id_start] [master_address]

性能测试

性能测试是在同样的目录下,但是是可以执行成功的

运行命令

bash run.sh pa_bf16 performance [[256,256]] 16 deepseekv2 /path/to/weights/DeepSeek-R1 /path/to/xxx/ranktable.json 16 2 0 {主节点IP}
# 0 代表从0号卡开始推理,之后的机器依次从8,16,24。

跑完会生成一个csv文件,里面保存了本次测试的指标,比如

Model

Batchsize

In_seq

Out_seq

Total time(s)

First token time(ms)

Non-first token time(ms)

Non-first token Throughput(Tokens/s)

E2E Throughput(Tokens/s)

Non-first token Throughput Average(Tokens/s)

E2E Throughput Average(Tokens/s)

deepseekv2

16

256

256

18.6202795506

478.01

71.03

225.25693369

219.9752151346

225.25693369

219.9752151346

参数解释:

  • Batch size,批次大小

  • 输入序列长度(In_seq)

  • 输出序列长度(Out_seq)

  • 总耗时(Total time)

  • 首 token 生成耗时(First token time)

  • 非首 token 平均生成耗时(Non-first token time)

  • 非首 token 吞吐率(Throughput)

  • 端到端吞吐率(E2E Throughput)


推理部署

上述的两个测试都是可选的,性能测试可以跑一下,调一下bs,看看能跑出什么样的效果

启动前需要配置一下容器,每个容器都执行一下:

export PYTORCH_NPU_ALLOC_CONF=expandable_segments:True
export MIES_CONTAINER_IP=容器ip地址
export RANKTABLEFILE=rank_table_file.json路径

export OMP_NUM_THREADS=1
export NPU_MEMORY_FRACTION=0.95

注意,上述的路径是指容器内的路径,并且每台机器的ip都要对应正确

执行完后,每台机器都要对应修改服务化参数,即部署的参数配置 

因为这个文件是在容器中,需要用vim修改,比较麻烦,这里推荐一个方法

将该文件复制一份到宿主机上,使用的命令是:

docker cp 镜像id:/usr/local/Ascend/mindie/latest/mindie-service/conf/config.json /本地目录

这样,你可以在宿主机上进行修改json文件,方便快捷,因为每台机器都是一样的配置,因此,修改好后,每台机器复制一份就可以了。 改完之后,需要在传回到镜像中,使用

docker cp 本地目录/config.json  容器id:/usr/local/Ascend/mindie/latest/mindie-service/conf/config.json 

这样就完成了配置文件的修改,这个配置文件后续需要调整,这种方式省去了很多麻烦

下面是官方给的配置,如果想要部署的模型推理更快或者输入输出更长,都需要对应的调整该文件的参数,这部分暂时没有什么好的建议,目前我设置的是32k,可以正常部署起来,推理速度还可以

详细的参数介绍参考这个

{
    "Version" : "1.0.0",
    "LogConfig" :
    {
        "logLevel" : "Info",
        "logFileSize" : 20,
        "logFileNum" : 20,
        "logPath" : "logs/mindie-server.log"
    },

    "ServerConfig" :
    {
        "ipAddress" : "改成主节点IP",
        "managementIpAddress" : "改成主节点IP",
        "port" : 1025,
        "managementPort" : 1026,
        "metricsPort" : 1027,
        "allowAllZeroIpListening" : false,
        "maxLinkNum" : 1000, //如果是4机,建议300
        "httpsEnabled" : false,
        "fullTextEnabled" : false,
        "tlsCaPath" : "security/ca/",
        "tlsCaFile" : ["ca.pem"],
        "tlsCert" : "security/certs/server.pem",
        "tlsPk" : "security/keys/server.key.pem",
        "tlsPkPwd" : "security/pass/key_pwd.txt",
        "tlsCrlPath" : "security/certs/",
        "tlsCrlFiles" : ["server_crl.pem"],
        "managementTlsCaFile" : ["management_ca.pem"],
        "managementTlsCert" : "security/certs/management/server.pem",
        "managementTlsPk" : "security/keys/management/server.key.pem",
        "managementTlsPkPwd" : "security/pass/management/key_pwd.txt",
        "managementTlsCrlPath" : "security/management/certs/",
        "managementTlsCrlFiles" : ["server_crl.pem"],
        "kmcKsfMaster" : "tools/pmt/master/ksfa",
        "kmcKsfStandby" : "tools/pmt/standby/ksfb",
        "inferMode" : "standard",
        "interCommTLSEnabled" : false,
        "interCommPort" : 1121,
        "interCommTlsCaPath" : "security/grpc/ca/",
        "interCommTlsCaFiles" : ["ca.pem"],
        "interCommTlsCert" : "security/grpc/certs/server.pem",
        "interCommPk" : "security/grpc/keys/server.key.pem",
        "interCommPkPwd" : "security/grpc/pass/key_pwd.txt",
        "interCommTlsCrlPath" : "security/grpc/certs/",
        "interCommTlsCrlFiles" : ["server_crl.pem"],
        "openAiSupport" : "vllm"
    },

    "BackendConfig" : {
        "backendName" : "mindieservice_llm_engine",
        "modelInstanceNumber" : 1,
        "npuDeviceIds" : [[0,1,2,3,4,5,6,7]],
        "tokenizerProcessNumber" : 8,
        "multiNodesInferEnabled" : true,
        "multiNodesInferPort" : 1120,
        "interNodeTLSEnabled" : false,
        "interNodeTlsCaPath" : "security/grpc/ca/",
        "interNodeTlsCaFiles" : ["ca.pem"],
        "interNodeTlsCert" : "security/grpc/certs/server.pem",
        "interNodeTlsPk" : "security/grpc/keys/server.key.pem",
        "interNodeTlsPkPwd" : "security/grpc/pass/mindie_server_key_pwd.txt",
        "interNodeTlsCrlPath" : "security/grpc/certs/",
        "interNodeTlsCrlFiles" : ["server_crl.pem"],
        "interNodeKmcKsfMaster" : "tools/pmt/master/ksfa",
        "interNodeKmcKsfStandby" : "tools/pmt/standby/ksfb",
        "ModelDeployConfig" :
        {
            "maxSeqLen" : 10000,
            "maxInputTokenLen" : 2048,
            "truncation" : true,
            "ModelConfig" : [
                {
                    "modelInstanceType" : "Standard",
                    "modelName" : "deepseekr1",
                    "modelWeightPath" : "/home/data/dsR1_base_step178000",
                    "worldSize" : 8,
                    "cpuMemSize" : 5,
                    "npuMemSize" : -1,
                    "backendType" : "atb",
                    "trustRemoteCode" : false
                }
            ]
        },

        "ScheduleConfig" :
        {
            "templateType" : "Standard",
            "templateName" : "Standard_LLM",
            "cacheBlockSize" : 128,

            "maxPrefillBatchSize" : 8,
            "maxPrefillTokens" : 2048,
            "prefillTimeMsPerReq" : 150,
            "prefillPolicyType" : 0,

            "decodeTimeMsPerReq" : 50,
            "decodePolicyType" : 0,

            "maxBatchSize" : 8,
            "maxIterTimes" : 1024,
            "maxPreemptCount" : 0,
            "supportSelectBatch" : false,
            "maxQueueDelayMicroseconds" : 5000
        }
    }
}

启动服务

启动命令也比较简单

cd /usr/local/Ascend/mindie/latest/mindie-service
nohup ./bin/mindieservice_daemon > /workspace/output.log 2>&1 &

这里最好是把启动服务的命令挂后台,这样能查看日志,否则关闭终端后,虽然服务不掉,但是日志是找不到了,不方便debug

执行命令后,首先会打印本次启动所用的所有参数,然后直到出现以下输出:

Daemon start success!

则认为服务成功启动。

到这里可以认为是部署成功了,还有最后一步的测试:

curl -X POST http://{ip}:{port}/v1/chat/completions \
     -H "Accept: application/json" \
     -H "Content-Type: application/json" \
     -d '{
       "model": "DeepSeek-R1",
       "messages": [{
         "role": "user",
         "content": "你好"
       }],
       "max_tokens": 20,
       "presence_penalty": 1.03,
       "frequency_penalty": 1.0,
       "seed": null,
       "temperature": 0.5,
       "top_p": 0.95,
       "stream": true
     }'

注意,官方教程里是没有开启HTTPS通信,后续调用的时候用http,而不是https

使用https需要配置开启HTTPS通信所需服务证书、私钥等证书文件

以上能看到输出,就算是部署成功了

最后是适配OpenAI式的推理接口,可以参考

有些槽点不得不提:

整个部署流程基本按照官方教程来的,但是一步一坑,各种稀奇古怪的问题,主要还找不到日志,容器里的目录翻了一遍,没有几个能看到实质性报错的内容,一般可以从/root/mindie下找到一些。 网上也很少能搜到对应的问题,部署帖子如果能有个讨论的空间就好了,方便避坑

另外就是,这教程写的有些地方对不上(可能是我操作不对),很奇怪。比如测试的目录,刚开始很困惑,检查了数遍才在另外的目录下找到

还有一些问题,排查不出来,最后找华为老师解决的,还是很感谢快速的支持,希望国产越来越好。

部署问题,加载tokenizer失败 解决方式:检查tokenizer.json 文件是否和官网一致,并且检查一下权限,是否能正常读取 

图片

还遇到一个问题,比如下面这个 

图片

只看日志,好像也看不出是什么原因,最终的解决方案是:升级驱动! 

有类似问题是hccn 导致的,升级到24.1.0很多问题就自然的解决了,遇到难以解决的问题,不要怀疑自己.. 

cann 不用升级,只需升级昇腾NPU固件和驱动 

选择欧拉系统,注意,这里可以选择800I A2推理服务器,推理速度更快 

下载完这两个文件,正常按照流程安装即可

图片

 

 

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

<think>好的,用户问的是DeepSeek-R1满血和普通的区别。我需要先确认这两个版本的具体信息。可能涉及硬件配置、性能参数、功能特性或者应用场景的不同。 首先,我应该回想一下之前学过的关于DeepSeek-R1的知识。根据记忆,DeepSeek-R1是深度求索公司开发的智能助手,可能像其他AI模型一样,有不同版本,比如基础和增强满血可能指的是性能更强的版本,可能在模型规模、响应速度、多轮对话能力、支持的功能等方面有提升。 接下来要考虑用户可能的背景。用户可能是普通消费者,想了解哪个版本更适合自己,或者是技术人员,想了解技术差异。用户的问题比较直接,可能需要简洁明了的对比,但也要确保信息准确。 需要确认是否有官方资料提到这两个版本的区别。假设没有公开详细资料,可能需要基于常见的版本差异来推测。比如满血可能有更大的参数数量,更好的理解能力,更高的响应速度,支持更复杂的任务,或者具备更多的定制化功能。 另外,要注意可能的命名差异,有时候“满血”可能指解锁了全部功能的版本,而普通可能在某些方面有限制,比如处理速度、同时处理的请求数,或者API调用的限制。 还要考虑价格和可用性,满血可能面向企业用户或需要更高性能的场景,而普通适合一般用户。不过如果这是内部测试版本或未公开的,可能需要说明信息不足,建议查阅官方渠道。 需要确保回答准确,如果有不确定的地方,应该建议用户参考官方发布的信息,避免提供错误的内容。同时保持回答结构清晰,分点列出区别,方便用户快速理解。 最后,检查是否有遗漏的关键点,比如是否支持多语言、特定领域的优化、隐私保护措施等,这些也可能是版本间的差异。但如果没有明确的信息,可能需要避免猜测,保持回答基于已知信息。 总结,应该分点列出可能的区别,包括性能、功能、应用场景、访问限制等方面,同时提醒用户以官方信息为准,确保回答的可靠性和实用性。</think>DeepSeek-R1是深度求索公司(DeepSeek)开发的智能助手,其不同版本通常会在性能、功能或适用场景上有所区别。关于**DeepSeek-R1满血**与**DeepSeek-R1**的区别,以下是一些可能的差异方向(基于常见的版本迭代逻辑推测,具体以官方信息为准): --- ### 1. **性能与模型规模** - **满血**:可能采用更大规模的模型参数,拥有更强的语义理解、推理能力和生成质量,尤其在复杂任务(如长文本生成、多轮对话、逻辑推理)中表现更优。 - **标准**:可能在模型规模或计算资源上有所精简,适合轻量级任务或对响应速度要求较高的场景。 --- ### 2. **功能特性** - **满血**:可能支持更多高级功能,例如: - 更长的上下文记忆(处理更长对话历史)。 - 支持插件或外部工具调用(如联网搜索、数据分析等)。 - 多模态能力(图文混合处理)。 - **标准**:功能相对基础,专注于通用对话和常见任务。 --- ### 3. **响应速度与资源占用** - **满血**:可能因模型复杂度更高,对算力需求较大,响应速度略慢,但结果更精准。 - **标准**:可能优化了推理效率,响应更快,适合实时交互场景。 --- ### 4. **应用场景** - **满血**:面向企业级用户或复杂需求,如专业咨询、代码开发、数据分析等。 - **标准**:适合个人用户的日常问答、简单创作等场景。 --- ### 5. **访问权限与成本** - **满血**:可能需要通过API付费订阅或专属授权访问,成本较高。 - **标准**:可能免费开放或提供基础限次API,成本更低。 --- ### 注意事项 - 具体差异需以**官方发布信息**为准,建议通过DeepSeek官网或技术文档获取最新版本说明。 - 版本命名可能因公司策略调整而变化(例如“满血”可能指完全体模型,而标准是轻量化部署)。 如果需要进一步确认细节,可关注深度求索公司的官方公告或联系其技术支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值