使用Nim编程语言破解网易易盾滑动验证码

网易易盾(dun.163.com)是一种常见的验证码解决方案,它提供了滑动验证码来验证用户的人机身份。在本文中,我们将使用Nim编程语言结合Selenium和OpenCV来破解网易易盾的滑动验证码。

1. 安装依赖

首先,确保已经安装了Nim编程语言、Selenium和OpenCV库。

2. 获取验证码图片

我们需要使用Selenium WebDriver来加载网易易盾的页面,并截取验证码的背景图片和滑块图片。然后,使用OpenCV库来处理这些图片。

nim

import selenium
import os
import cv2

proc get_images(bg_url: string, s_url: string): tuple[bg_path: string, s_path: string] =
  let driver = newChromeDriver()
  driver.get(bg_url)
  driver.save_screenshot("bg_screenshot.png")
  let bg_element = driver.find_element_by_xpath("//div[@class='yidun_bg-img']/img")
  bg_element.screenshot("bg_image.png")
  let s_element = driver.find_element_by_xpath("//div[@class='yidun_jigsaw']/img")
  s_element.screenshot("s_image.png")
  driver.quit()
  return ("bg_image.png", "s_image.png")
3. 图片处理和匹配

接下来,我们使用OpenCV库来处理截取到的图片,并进行模板匹配来找到滑块的位置。

nim

proc find_slider_position(bg_path: string, s_path: string): int =
  let bg_img = cv2.imread(bg_path)
  let s_img = cv2.imread(s_path)
  let s_height, s_width = s_img.shape[0], s_img.shape[1]
  let result = cv2.matchTemplate(bg_img, s_img, cv2.TM_CCOEFF_NORMED)
  let min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
  let x, y = max_loc[0], max_loc[1]
  return x + s_width
4. 模拟滑动

最后,我们使用Selenium WebDriver来模拟滑动操作,完成验证码的破解。

nim

proc simulate_slide(driver: WebDriver, element: WebElement, distance: int) =
  # 实现模拟滑动操作
  discard
5. 完整代码示例

nim

import selenium
import os
import cv2

proc get_images(bg_url: string, s_url: string): tuple[bg_path: string, s_path: string] =
  let driver = newChromeDriver()
  driver.get(bg_url)
  driver.save_screenshot("bg_screenshot.png")
  let bg_element = driver.find_element_by_xpath("//div[@class='yidun_bg-img']/img")
  bg_element.screenshot("bg_image.png")
  let s_element = driver.find_element_by_xpath("//div[@class='yidun_jigsaw']/img")
  s_element.screenshot("s_image.png")
  driver.quit()
  return ("bg_image.png", "s_image.png")

proc find_slider_position(bg_path: string, s_path: string): int =
  let bg_img = cv2.imread(bg_path)
  let s_img = cv2.imread(s_path)
  let s_height, s_width = s_img.shape[0], s_img.shape[1]
  let result = cv2.matchTemplate(bg_img, s_img, cv2.TM_CCOEFF_NORMED)
  let min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
  let x, y = max_loc[0], max_loc[1]
  return x + s_width

proc simulate_slide(driver: WebDriver, element: WebElement, distance: int) =
  # 实现模拟滑动操作
  discard

# 主程序
let bg_url = "https://dun.163.com/trial/jigsaw"
let s_url = "https://dun.163.com/trial/picture-click"
let bg_path, s_path = get_images(bg_url, s_url)
let distance = find_slider_position(bg_path, s_path)

# 模拟滑动
let driver = newChromeDriver()
driver.get(bg_url)
let element = driver.find_element_by_xpath("//div[@class='yidun_slider']//div[@class='yidun_bg-img']")
simulate_slide(driver, element, distance)

更多内容联系q1436423940

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值