网易易盾(dun.163.com)是一种常见的验证码解决方案,它提供了滑动验证码来验证用户的人机身份。在本文中,我们将使用Nim编程语言结合Selenium和OpenCV来破解网易易盾的滑动验证码。
1. 安装依赖
首先,确保已经安装了Nim编程语言、Selenium和OpenCV库。
2. 获取验证码图片
我们需要使用Selenium WebDriver来加载网易易盾的页面,并截取验证码的背景图片和滑块图片。然后,使用OpenCV库来处理这些图片。
nim
import selenium
import os
import cv2
proc get_images(bg_url: string, s_url: string): tuple[bg_path: string, s_path: string] =
let driver = newChromeDriver()
driver.get(bg_url)
driver.save_screenshot("bg_screenshot.png")
let bg_element = driver.find_element_by_xpath("//div[@class='yidun_bg-img']/img")
bg_element.screenshot("bg_image.png")
let s_element = driver.find_element_by_xpath("//div[@class='yidun_jigsaw']/img")
s_element.screenshot("s_image.png")
driver.quit()
return ("bg_image.png", "s_image.png")
3. 图片处理和匹配
接下来,我们使用OpenCV库来处理截取到的图片,并进行模板匹配来找到滑块的位置。
nim
proc find_slider_position(bg_path: string, s_path: string): int =
let bg_img = cv2.imread(bg_path)
let s_img = cv2.imread(s_path)
let s_height, s_width = s_img.shape[0], s_img.shape[1]
let result = cv2.matchTemplate(bg_img, s_img, cv2.TM_CCOEFF_NORMED)
let min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
let x, y = max_loc[0], max_loc[1]
return x + s_width
4. 模拟滑动
最后,我们使用Selenium WebDriver来模拟滑动操作,完成验证码的破解。
nim
proc simulate_slide(driver: WebDriver, element: WebElement, distance: int) =
# 实现模拟滑动操作
discard
5. 完整代码示例
nim
import selenium
import os
import cv2
proc get_images(bg_url: string, s_url: string): tuple[bg_path: string, s_path: string] =
let driver = newChromeDriver()
driver.get(bg_url)
driver.save_screenshot("bg_screenshot.png")
let bg_element = driver.find_element_by_xpath("//div[@class='yidun_bg-img']/img")
bg_element.screenshot("bg_image.png")
let s_element = driver.find_element_by_xpath("//div[@class='yidun_jigsaw']/img")
s_element.screenshot("s_image.png")
driver.quit()
return ("bg_image.png", "s_image.png")
proc find_slider_position(bg_path: string, s_path: string): int =
let bg_img = cv2.imread(bg_path)
let s_img = cv2.imread(s_path)
let s_height, s_width = s_img.shape[0], s_img.shape[1]
let result = cv2.matchTemplate(bg_img, s_img, cv2.TM_CCOEFF_NORMED)
let min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
let x, y = max_loc[0], max_loc[1]
return x + s_width
proc simulate_slide(driver: WebDriver, element: WebElement, distance: int) =
# 实现模拟滑动操作
discard
# 主程序
let bg_url = "https://dun.163.com/trial/jigsaw"
let s_url = "https://dun.163.com/trial/picture-click"
let bg_path, s_path = get_images(bg_url, s_url)
let distance = find_slider_position(bg_path, s_path)
# 模拟滑动
let driver = newChromeDriver()
driver.get(bg_url)
let element = driver.find_element_by_xpath("//div[@class='yidun_slider']//div[@class='yidun_bg-img']")
simulate_slide(driver, element, distance)
更多内容联系q1436423940