AI绘画SD中,如何保持生成人物角色脸部一致?Stable Diffusion精准控制AI人像一致性两种实用方法教程!

在AI绘画StableDiffusion中,一直都有一个比较困难的问题,就是如何保证每次出图都是同一个人。今天就这个问题分享一些个人实践,大家和我一起来看看吧。

一. 有哪些实现方式

方式1:固定Seed种子值。

固定Seed种子值出来的图片人物确实可以做到一致,但Seed种子值是相对整个画面的,导致这种方式生成的新图片效果差别太小,可能除了人物的脸保存了一致,人物的姿势也保持了一致,甚至画面的背景也保持了一致,出来的图片太过单调。

此时我们虽然可以通过ContolNet来控制人物的姿势,但是效果并不可控。

方式2:使用Reactor换脸插件

Reactor插件是我们常见的换脸插件,将生成的图片中人物都使用一张人脸图片去替换,可以很好地做到图片中人脸一致。

方式3:直接利用已有的人物LORA模型

直接使用C站提供的LORA模型,我们也可以生成人脸基本一致的图片。这里的基本一致,不能百分百一致。因为每个人物Lora的训练数据集不一定很全面,主要包括数量、质量、角度等因素不同,出的图很难保证人脸完全一致。

方式4:使用ControlNet预处理Reference only

下面我们重点看一下方式3和方式4,尤其是方式4,是目前实现人脸一致效果的最好方式,不仅适用于人,而且还适用于动物和二次元形象。

教程实操演示

1、LORA模型实现人脸一致的效果

在本期教程开始之前,我们需要安装好AI绘画工具StableDiffusion
请添加图片描述

本期教程中所使用到的AI绘画大模型、Lora模型、插件等可以看下方或文末扫描免费获取哦

我们先通过一个实例看看如何通过LORA实现人脸一致效果。

大模型:majicmixRealistic_v6.safetensors

正向提示词:a beautiful girl, very delicate features, very detailed eyes and mouth, long hair, delicate skin, big eyes,red sweater, necklace,standing in the classroom, upper body photos,best quality, ultra-detailed, masterpiece, finely detail, highres, 8k wallpaper,lora:cuteGirlMix4\_v10:1

反向提示词:(worst quality:2), (low quality:2), (normal quality:2), lowres, ((monochrome)), ((grayscale)), bad anatomy,DeepNegative, skin spots, acnes, skin blemishes,(fat:1.2),facing away, looking away,tilted head, lowres,bad anatomy,bad hands, missing fingers,extra digit, fewer digits,bad feet,poorly drawn hands,poorly drawn face,mutation,deformed,extra fingers,extra limbs,extra arms,extra legs,malformed limbs,fused fingers,too many fingers,long neck,cross-eyed,mutated hands,polar lowres,bad body,bad proportions,gross proportions,missing arms,missing legs,extra digit, extra arms, extra leg, extra foot,teethcroppe,signature, watermark, username,blurry,cropped,jpeg artifacts,text,error

这里我们选择LORA模型cuteGirlMix4 (模型下载请看文末扫描免费获取哦),权重设置为1

在这里插入图片描述

生成效果:
在这里插入图片描述

是不是感觉还不错?好像是比较相似,那接下来我把LORA模型 cuteGirlMix4的权重调整到0.6,我们再看一下效果。

在这里插入图片描述

4张美女的脸差别有些明显了。

关于LORA模型cuteGirlMix4,官网推荐搭配的模型是Chilloutmix。它的训练集来自国外抖音(tiktok)网红,而不是任何特定的真人,权重建议值是0.4-0.7。我们看到当权重设置为1时,人物的效果还是比较好。

可见,将LORA模型cuteGirlMix4的权重设置为1,可以实现最简单的人脸一致。

2、使用ControlNet预处理Reference only实现人脸一致

使用Reference Only时,需要安装好ControlNet插件,如果你还没有安装过,那么可以看下方扫描免费获取ControlNet插件安装包,包含内置的各种组件和模型文件!
请添加图片描述

Reference only是去年5月份ControlNet重大更新中推出的新功能。它不需要任何控制模型即可实现直接使用一张图片作为参考来引导扩散。

我们来使用看一下效果。

大模型:majicmixRealistic_v6.safetensors

正向提示词:a beautiful girl, very delicate features, very detailed eyes and mouth, long hair, delicate skin, big eyes,red sweater, necklace,standing in the classroom, upper body photos,best quality, ultra-detailed, masterpiece, finely detail, highres, 8k wallpaper, lora:cuteGirlMix4\_v10:0.6

采样器:DPM++ SDE Karras

采样迭代步数:28

我们先直接生成一张图片,效果如下:

在这里插入图片描述

我们使用这张图作为底图,使用ControlNet的预处理

在这里插入图片描述

我们修改一下正向提示词:将背景换为海边,衣服换为皮夹克。

a beautiful girl, very delicate features, very detailed eyes and mouth, long hair, delicate skin, big eyes,leather jacket, necklace, standing by the sea, upper body photos,best quality, ultra-detailed, masterpiece, finely detail, highres, 8k wallpaper,

生成图片的效果如下:

在这里插入图片描述

我们修改一下大模型,改变一下画面风格,例如换成anything-v4.5-pruned-fp16.ckpt,提示词和参数设置都保持不变。我们看一下生成图片的效果。

在这里插入图片描述

我们再看一个实例:一只奔跑的狗

大模型:majicmixRealistic_v6.safetensors

正向提示词:best quality, ultra-detailed, masterpiece, finely detail, highres, 8k wallpaper,a running dog

采样器:DPM++ SDE Karras

采样迭代步数:28

生成的图片效果如下:

在这里插入图片描述

我们使用这张图作为底图,使用ControlNet的预处理。

在这里插入图片描述

重新生成效果如下:

在这里插入图片描述

通过上面的实例,可以看到通过使用ControlNet的预处理reference-only实现人物(动物)的一致效果还是相当不错的。然后我们再通过背景的改变,实现同一个人物在不同场景下的图片效果了。

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

请添加图片描述

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

请添加图片描述

<think>好的,用户让我介绍一下如何生成一张美女图像。首先,我需要理解用户的具体需求是什么。他们可能对AI生成图像的技术感兴趣,或者想了解具体的步骤和工具。不过,用户之前询问过“猜猜我是谁”的游戏,现在突然转向生成美女图像,可能存在一些潜在需求,比如想自己尝试生成图像,或者对AI技术应用在图像生成方面感到好奇。 接下来,我需要考虑用户的技术背景。他们可能不熟悉AI生成图像的具体方法,所以需要用简单易懂的语言解释。同时,用户可能关心伦理和法律问题,比如版权和隐私,这也是需要强调的部分。 然后,我应该提供多种方法,涵盖不同技术水平的用户。比如,提到在线工具如MidJourney和DALL-E,适合没有编程经验的用户;而Stable Diffusion和GANs则适合有一定技术背景的用户。这样能满足不同用户的需求。 另外,需要提醒用户注意生成内容的安全性,避免生成不当内容,并尊重版权。这部分很重要,因为很多用户可能不了解相关法律法规,容易触犯红线。 最后,总结生成美女图像的技术流程,帮助用户形成整体认识。同时,建议他们根据需求选择合适的工具,并保持合法合规。这样既解答了用户的问题,又提供了实用的建议,帮助他们安全有效地使用相关技术。</think>生成高质量虚拟人像需要结合计算机图形学与人工智能技术。以下是技术实现的关键步骤及注意事项: ### 一、生成技术框架 1. **基础模型选择** - 生成对抗网络(GAN):$$ \min_G \max_D V(D,G) = E_{x∼p_{data}}[\log D(x)] + E_{z∼p_z}[\log(1-D(G(z)))] $$ - 扩散模型(Diffusion):$$ p_\theta(x_{0:T}) = p(x_T)\prod_{t=1}^T p_\theta(x_{t-1}|x_t) $$ 2. **特征控制参数** - 面部黄金比例:$$ \phi = \frac{瞳距}{鼻翼宽度} ≈ 1.618 $$ - 肤色模型:LAB色彩空间$$ L∈[0,100], a∈[-128,127], b∈[-128,127] $$ ### 二、生成流程 ```python # 基于Stable Diffusion的简化流程 from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") prompt = "高细节亚洲女性,电影级光照,4k分辨率,真实皮肤纹理" + \ "眼睛虹膜细节,自然妆容,工作室灯光" negative_prompt = "畸形,模糊,低分辨率,塑料质感" image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=7.5, # 控制文本对齐度 num_inference_steps=50 # 去噪迭代次数 ).images[0] ``` ### 三、伦理合规要点 1. **法律边界** - 禁止生成未满18岁人物形象 - 避免特定人物肖像权侵权(相似度<70%) 2. **内容安全过滤** - 使用NSFW检测模型:$$ P(unsafe|x) = \frac{1}{1+e^{-(w^T\phi(x)+b)}} $$ - 特征黑名单:包含不当姿势或服饰的关键词过滤 ### 四、质量评估指标 1. **客观指标** - FID分数:$$ FID = ||\mu_r - \mu_g||^2 + Tr(\Sigma_r + \Sigma_g - 2(\Sigma_r\Sigma_g)^{1/2}) $$ - IS指数:$$ IS = \exp(E_{x∼p_g}D_{KL}(p(y|x)||p(y))) $$ 2. **主观评估** - 面部对称性检测 - 皮肤纹理真实度 - 光影自然程度 ### 五、应用场景 1. **合规应用方向** - 虚拟服装模特(需配合服装物理仿真) - 游戏NPC生成(需绑定骨骼动画) - 影视预可视化(需多视角一致性) 建议使用DALL-E 3、Midjourney等合规平台进行创作,严格遵守平台的内容政策。如用于商业用途,建议叠加风格迁移技术确保生成结果的独特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值