Manus平替方案一:AgentGPT 部署与应用指南:从安装到实战(附安装包)

Manus平替方案一:AgentGPT 部署与应用指南:从安装到实战(附安装包)

img

,时长00:53

**文末附安装包获取方式!****

AgentGPT 部署与应用指南:从安装到实战

AgentGPT 是一款基于 GPT 模型的自主 AI 代理工具,用户可通过浏览器配置目标,由 AI 自动拆解任务并生成执行计划。以下是其部署与使用的完整操作指南,结合官方文档及社区实践经验整理。


一、部署前的准备
  1. 环境要求

    • 网络代理(可选):国内用户需配置 OpenAI API 代理地址以解决访问限制。
    • OpenAI API 密钥:从 OpenAI 平台申请,用于调用 GPT-3.5 或 GPT-4 模型。
    • Docker:支持跨平台部署(Windows/macOS/Linux),需提前安装 Docker Desktop 或 Docker Engine。
  2. 项目获取

    bash

    git clone https://github.com/reworkd/AgentGPT.gitcd AgentGPT
    

二、快速部署:一键脚本安装(推荐)

适用场景:快速体验基础功能,无需深度定制。

  1. 执行自动安装脚本

    bash

    # Linux/macOS./setup.sh# Windows./setup.bat
    

    脚本自动完成以下操作:

    • 拉取 Docker 镜像并启动容器
    • 初始化数据库(MySQL)和前后端服务
    • 默认访问地址:http://localhost:3000
  2. 验证部署
    访问 http://localhost:3000,输入 OpenAI API 密钥即可开始使用。


三、手动部署:开发模式与深度定制

适用场景:二次开发、插件扩展或调试需求。

  1. 依赖安装

    • 安装 Node.js v18+ 和包管理工具 pnpm:

      bash

      npm install -g pnpmpnpm install
      
  2. 关键配置修改

    • 依赖版本调整:修改 platform/pyproject.toml,将 langchain 版本降级至 0.0.344,避免兼容性报错。
    • 代理设置:全局替换代码中的 OpenAI 接口地址为代理 URL(解决国内访问问题)。
    • API 密钥配置:编辑 envGenerator.js,替换 REWORKD_PLATFORM_OPENAI_API_KEY 为实际密钥。
  3. 启动服务

    bash

    # 前端开发模式pnpm dev# 后端服务独立运行cd apps/api && pnpm start:dev
    

四、实战应用:目标拆解与计划生成

案例:制定 React 学习计划

  1. 输入目标

    • 名称:ReactMasterGPT
    • 目标:掌握 React 语法、核心概念及底层原理。
  2. AI 执行流程

    • 任务拆解:生成 8 个子任务,如学习 JSX 语法、组件生命周期、Hooks 机制等。
    • 资源推荐:自动关联 MDN Web Docs、React 官方文档、免费课程平台(如 freeCodeCamp)。
    • 进度追踪:实时显示任务完成状态,已完成的步骤提供代码示例和学习路径图。
  3. 结果优化

    • 细化执行项:针对“理解虚拟 DOM”任务,要求补充对比实验(如原生 DOM 操作 vs 虚拟 DOM 性能测试)。
    • 调整优先级:通过对话指令重置任务顺序,例如优先学习函数组件再接触类组件。

五、常见问题与解决方案
  1. Docker 权限错误

    bash

    sudo usermod -aG docker $USER && newgrp docker
    
  2. API 调用失败

    • 检查 OpenAI 密钥有效性及额度
    • 确认代理配置正确(若使用国内服务器)。
  3. 任务中断或逻辑混乱

    • 通过 PRO 订阅升级至 GPT-4,提升复杂任务处理能力。
    • 限制单次任务循环次数(默认 25 次),避免无限递归。

六、进阶功能探索
  1. 插件扩展

    • 集成网络搜索插件,实现实时数据获取(如天气查询、新闻摘要)。
    • 自定义知识库上传,打造垂直领域专家系统(如法律咨询、医疗问答)。
  2. 微信接入方案

    • 通过开源工具 chatgpt-on-wechat 将 AgentGPT 封装为微信机器人,支持群聊与私信指令响应(需实名认证微信号)。
    • (点击下方图片下载安装包)

img

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

5.免费获取

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击以下链接都可以免费领取【保证100%免费】

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值