摘要
随着社会的发展和经济的进步,城市交通系统日益复杂,交通信号灯在城市交通管理系统中起着越来越重要的作用。然而,目前对交通信号灯的识别主要依赖于人工视觉,这种方法不仅效率低,而且容易出错。因此,研究一种基于计算机视觉的交通信号灯识别系统具有很重要的现实意义。通过借助图像处理和深度学习等先进技术,对交通信号灯进行自动识别,可以实现对车辆行驶的实时监控,对交通违规行为的自动检测,为交通管理提供方便,并且为智能交通系统的发展提供技术支持。同时,随着自动驾驶技术的发展,交通信号灯识别系统对于自动驾驶车辆的安全性和智能化控制具有关键性的支持作用。随着近年来深度学习技术在视觉和图像领域的发展和应用,对交通信号灯识别也产生了很大的影响,利用深度学习技术可以提高信号灯识别的效率和精准度。
交通信号灯的准确识别对于智能交通系统的发展至关重要。本文提出了一种基于YOLO(You Only Look Once)的交通信号灯识别系统,旨在实现高效准确的交通信号灯检测与识别。该系统首先利用YOLO算法对交通场景中的交通信号灯进行检测,采用单次前向传播的方式实现对整个图像的端到端检测。其次,针对交通信号灯的多种状态(如红灯、绿灯、黄灯)进行分类识别,采用卷积神经网络(CNN)结合softmax分类器实现对不同状态的分类。在实验中,我们使用了大量真实场景下的交通信号灯图像进行训练和测试,并与传统方法进行了比较。实验结果表明,所提出的基于YOLO的交通信号灯识别系统在准确性和效率方面均取得了显著的改进,具有较高的识别准确率和较快的检测速度。因此,本文所提出的交通信号灯识别系统具有广泛的应用前景,在智能交通系统、自动驾驶等领域具有重要的意义。
关键词:交通信号灯识别;YOLO算法;卷积神经网络;智能交通系统
abstract
With the development of society and the progress of economy, the urban traffic system is becoming more and more complex, and the traffic lights play an increasingly important role in the urban traffic management system. However, the current recognition of traffic lights mainly relies on artificial vision, which is not only inefficient, but also prone to errors. Therefore, it is of great practical significance to study a traffic signal recognition system based on computer vision. By using advanced technologies such as image processing and deep learning, automatic identification of traffic lights can realize real-time monitoring of vehicle driving and automatic detection of traffic violations, which provides convenience for traffic management and provides technical support for the development of intelligent transportation systems. At the same time, with the development of autonomous driving technology, traffic light recognition system plays a key role in supporting the safety and intelligent control of autonomous vehicles. With the development and application of deep learning technology in the field of vision and image in recent years, it also has a great impact on the recognition of traffic lights. The use of deep learning technology can improve the efficiency and accuracy of signal light recognition.
The accurate identification of traffic lights is very important for the development of intelligent transportation system. This paper proposes a traffic signal recognition system based on YOLO (You Only Look Once), which aims to realize efficient and accurate traffic signal detection and recognition. The system first uses YOLO algorithm to detect the traffic lights in the traffic scene, and realizes the end-to-end detection of the whole image by a single forward propagation method. Secondly, various states of traffic lights (such as red light, green light, yellow light) are classified and recognized, and convolutional neural network (CNN) combined with softmax classifier is used to classify different states. In the experiment, we use a large number of traffic light images in real scenes for training and testing, and compare with traditional methods. The experimental results show that the proposed traffic light recognition system based on YOLO has achieved significant improvement in accuracy and efficiency, with high recognition accuracy and fast detection speed. Therefore, the traffic light recognition system proposed in this paper has a wide application prospect, and is of great significance in intelligent traffic system, automatic driving and other fields.
Keywords: traffic light recognition; YOLO algorithm; Convolutional neural network; Intelligent transportation system
目录
第一章 绪论
1.1 研究背景
随着全球经济的快速发展和城市化进程的日益加快,道路交通系统日益复杂,道路交通信号灯作为道路交通安全与指引的重要元素,其准确检测与识别对保障交通安全、提高行车效率具有重要意义,还可以辅助有视力障碍的人群,帮助他们准确、快速地检测和识别交通信号灯,以此来帮助驾驶员安全驾驶,减少因疏忽交通信号灯和错判交通信号等因素造成的交通事故和人身伤害。但是,传统的道路交通信号灯检测方法多半是基于图像处理和计算机视觉技术,受光照、遮挡、形变等多种因素影响,其准确性和鲁棒性难以满足日益增长的需求。因此,寻求一种更为高效、准确的道路交通信号灯检测方法成为了当前研究的热点。
近年来,深度学习技术以其强大的特征提取和分类能力,在图像识别、自然语言处理、语音识别等领域取得了显著的突破。特别是卷积神经网络(CNN)的出现,使得深度学习在图像识别领域的应用得到了极大的拓展。在此背景下,基于yolo的交通信号灯识别系统的设计与实现方法成为了新的研究趋势。该方法通过训练深度学习模型,能够自动学习并提取交通信号灯的特征,以此来实现对交通信号灯的高效、准确检测。
本研究旨在利用深度学习技术,构建一种高效、准确的道路交通信号灯检测系统。通过对现有深度学习算法和模型的研究,选择出适合交通信号灯检测的算法和模型,并进行一些优化和改进。同时,本研究还将关注如何克服光照、遮挡、形变等因素对交通信号灯检测的影响,提高系统的鲁棒性和实用性。
1.2 研究意义
如今随着现代科学技术的飞速发展,人工智能与深度学习技术已逐渐渗透到我们日常生活的方方面面,为我们提供了便捷的生活方式。其中,道路交通信号灯检测作为智能交通系统的重要组成部分,对于提升道路安全、优化交通流量以及辅助自动驾驶技术以及有视力障碍的人群,具有至关重要的作用。因此,基于yolo的交通信号灯识别系统的设计与实现研究不仅具有重要的理论价值,同时也具有广阔的应用前景。
从理论层面看,深度学习以其强大的特征提取和分类能力,为道路交通信号灯检测提供了新的解决方案。传统的检测方法往往依赖于手工设计的特征和复杂的图像处理流程,而深度学习能够通过自动学习的方式,从海量数据中提取有效特征,进而提升检测的准确性和鲁棒性。因此,本研究旨在探索深度学习在道路交通信号灯检测领域的应用潜力,推动相关理论的完善和发展。
从应用层面来看,道路交通信号灯检测对于提升道路安全具有重要意义。准确的标志检测能够帮助驾驶员及时获取道路信息,遵守交通规则,从而有效减少交通事故的发生。随着自动驾驶技术的不断发展,道路交通信号灯检测成为自动驾驶车辆感知周围环境的关键环节。本研究通过深度学习技术提升标志检测的准确性和实时性,为自动驾驶技术的发展提供了有力支持。
1.3 主要研究内容
本文主要围绕基于yolo的交通信号灯识别系统的设计与实现进行研究,具体的研究内容涵盖了以下几个方面:
本文将对深度学习和目标检测算法的理论基础进行深入研究。通过探讨深度学习的基本原理、卷积神经网络(CNN)的架构以及目标检测算法的发展,为后续的模型构建和实验打下坚实的理论基础。
本文将重点研究YOLO(You Only Look Once)算法在道路交通信号灯检测中的应用。YOLO算法作为一种高效的目标检测算法,具有速度快、精度高等优点,非常适合用于实时性要求较高的道路交通信号灯检测任务。本文将详细分析YOLO算法的原理和优势,并探讨如何将其应用于道路交通信号灯检测中。
本文将研究如何构建和优化基于YOLO的道路交通信号灯检测模型。这包括选择合适的网络架构、调整模型参数、优化训练过程等。通过不断地模型调优和实验验证,本文旨在提高模型在道路交通信号灯检测任务中的性能,包括检测精度、速度和鲁棒性等。
本文还将研究如何对构建的模型进行实际应用和评估。这包括准备合适的数据集、设计实验方案、进行模型训练和测试等。通过对模型的实际应用,本文将验证其在道路交通信号灯检测中的有效性和可靠性,并为未来的研究和应用提供有价值的参考。
1.4 创新点
本文的创新点主要体现在以下几个方面:
本文提出了一种基于yolo的交通信号灯识别系统的设计与实现方法,该方法结合了深度学习算法的特征提取能力和目标检测算法的精确性,实现对道路交通信号灯的高效、准确检测。这一创新点不仅提高了交通信号灯检测的准确性,而且为智能交通系统的发展提供了新的思路和方法。
本文在YOLO模型的基础上进行了改进,构建了一种更适合于道路交通信号灯检测的深度学习模型。通过调整模型的参数和结构,本文提高了模型的检测速度和准确率,使得模型能够更好地适应复杂的道路交通环境。这一创新点不仅增强了模型的实用性,而且为深度学习在交通信号灯检测领域的应用提供了新的参考。
1.5 章节安排
本文的章节安排旨在系统地阐述基于yolo的交通信号灯识别系统的设计与实现的研究过程与主要成果。每个章节都围绕着研究的核心目标展开,层层递进,确保读者能够清晰地理解研究的全貌和深度。
第一章为概述部分,旨在介绍研究的背景、意义、主要内容和创新点。通过这一章节,读者能够对本研究有一个整体的认识,为后续深入阅读打下基础。
第二章着重于相关理论概述,特别是YOLO算法和Flask的概述。这一章节将深入探讨算法的基本原理、发展历程以及它们在交通信号灯检测中的潜在应用,为后续模型的构建提供理论支撑。
第三章将详细阐述深度学习模型的理论基础。数据集及数据的处理,数据集来自哪里,数据集的数量和各个量分布,数据的预处理工作。
第四章将聚焦于系统的实现并展示系统的功能。通过系统概述和主要功能展示,读者能够直观地了解系统的运行效果和应用价值。这一章节将提供丰富的实例和效果展示,以增强系统的说服力。
第五章将进行系统的总结与展望。
最后参考文献和致谢部分将列出本文引用的相关文献和感谢的人员及机构,以确保研究的完整性和规范性。
第二章 相关理论技术基础
2.1 YOLO算法概述
YOLO(You Only Look Once)算法是一种目标检测算法,其核心思想是将目标检测视为回归问题,从而实现了端到端的训练。这种算法摒弃了传统的目标检测算法中区域提议(Region Proposal)的步骤,直接在单个网络中进行训练和检测,大大提高了检测速度。
将输入图像划分为S×S的网格,每个网格负责预测B个边界框(Bounding Box),每个边界框包含位置信息(中心坐标、宽和高)和置信度(包含目标的概率)。同时,每个网格还负责预测C个类别的概率。在训练过程中,算法通过最小化损失函数来优化网络参数,损失函数包含了边界框的坐标损失、置信度损失和类别概率损失。
速度快、背景误检率低。这是因为算法将目标检测视为回归问题,直接在单个网络中进行训练和检测,避免了传统算法中复杂的多阶段处理流程。YOLO算法在训练过程中使用了大量的数据增强技术,进一步提高了模型的泛化能力。
然而,YOLO算法也存在一些局限性。例如,由于每个网格只负责预测固定数量的边界框,因此当目标数量较多或目标尺寸较小时,可能会出现漏检的情况。算法对于相邻目标的检测也存在一定的困难。
为了克服这些局限性,研究者们提出了YOLOv2、YOLOv3等改进版本。这些版本在保持YOLO算法优点的基础上,通过引入新的网络结构、优化损失函数等方法,进一步提高了检测精度和速度。目前,YOLO算法已经广泛应用于自动驾驶、智能监控、机器人等领域。
2.2 C/S架构
C/S架构,即Client/Server架构,是一种常见的软件架构模式,通常用于构建网络应用程序。在C/S架构中,软件系统被分为两个主要部分:客户端(Client)和服务器端(Server)。客户端负责向用户提供界面和交互功能,而服务器端则负责处理客户端发送的请求并提供相应的服务或资源。
C/S架构允许将系统的功能和数据分布在不同的计算机或设备上,通过网络进行通信和交互。这种分布式架构使得系统更加灵活和可扩展。客户端通常是用户直接与之交互的界面,可以是桌面应用程序、移动应用程序或Web浏览器。客户端负责向用户提供友好的界面,并将用户的请求发送到服务器端进行处理。服务器端通常是运行在一个或多个专用服务器上的软件程序,负责接收、处理和响应客户端的请求。服务器端可以提供各种服务,如数据库访问、文件存储、计算等。
客户端和服务器端之间通过网络进行数据交互,通常使用TCP/IP协议或HTTP协议。客户端发送请求给服务器,服务器进行处理并返回响应给客户端。C/S架构可以提供较高的安全性,因为服务器端可以集中管理和控制用户的访问权限,对敏感数据进行保护和加密,同时客户端只能通过受限的接口与服务器通信。通过将一些计算和处理任务放在服务器端执行,可以减轻客户端的负担,提高系统的性能和响应速度。
总的来说,C/S架构适用于需要在客户端和服务器端之间进行复杂交互和数据处理的应用程序,能够提供较好的灵活性、可扩展性和安全性。
2.3 Python技术
Python由荷兰国家数学与计算机科学研究中心的吉多·范罗苏姆于1990年代初设计,作为一门叫做ABC语言的替代品。 Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言, 随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。 Python在各个编程语言中比较适合新手学习,Python解释器易于扩展,可以使用C、C++或其他可以通过C调用的语言扩展新的功能和数据类型。 Python也可用于可定制化软件中的扩展程序语言。Python丰富的标准库,提供了适用于各个主要系统平台的源码或机器码。
第三章 深度学习模型理论
3.1 数据处理流程
在基于yolo的交通信号灯识别系统的设计与实现任务中,数据集准备是至关重要的第一步。一个全面、多样且标注准确的数据集是训练出高效模型的关键。
我们需要收集大量的道路交通信号灯图像。这些图像可以来源于公开的交通信号灯数据集,如GTSRB(German Traffic Sign Recognition Benchmark)或自行采集。为了确保模型的泛化能力,我们要求数据集具有多样性,包括不同的天气条件(晴天、雨天、雪天等)、光照条件(明亮、昏暗、逆光等)、拍摄角度(正面、侧面、倾斜等)以及不同国家的交通信号灯。
图 3-1 数据预处理
数据准备:收集大量包含遮挡和非遮挡道路交通信号灯的图像数据集,并进行标注,标注出道路交通信号灯位置和是否有遮挡。然后将数据集分为训练集和测试集。
模型训练:
a. 网络架构选择:选择适合道路交通信号灯任务的YOLO版本,如YOLOv3、YOLOv4等。
b. 预训练模型加载:使用在大规模数据集上预训练好的权重参数初始化模型,如COCO数据集。
c. 微调训练:将训练集输入到模型中进行微调训练,通过反向传播算法更新模型的权重参数。同时,可以采用数据增强技术,如随机裁剪、旋转、缩放等,增加训练集的多样性和泛化能力。
d. 模型评估:使用测试集评估模型的性能,计算准确率、召回率、F1分数等指标,根据评估结果对模型进行调优。
图像识别:使用训练好的模型对待检测的图像进行图像识别。
a. 图像预处理:对待检测的图像进行预处理,如图像缩放、灰度转换等,以适应模型的输入要求。
b. 图像前向传播:将预处理后的图像输入到训练好的模型中进行前向传播,得到图像识别结果。
c. 边界框处理:根据模型输出的边界框信息,对遮挡区域进行定位和标记。
结果输出:根据图像识别结果,输出遮挡道路交通信号灯的位置、遮挡程度或分类结果。
需要注意的是,以上流程仅为基于YOLO算法的道路交通信号灯系统的一种实现方式,具体的实现细节可能根据具体需求和场景的不同而有所调整。此外,还可以结合其他技术和方法,如图像处理、特征提取等,进一步完善系统的性能和鲁棒性。
3.2数据处理模型
基于YOLO算法的道路交通信号灯系统的系统平台架构可以包括以下几个关键组件:
前端图像输入:前端接收来自摄像头或图像文件的原始图像数据,并将其传递给后端进行处理。
模型部署:在系统中部署经过训练和优化的YOLO算法模型,用于道路交通信号灯图像识别任务。可以选择在本地设备上部署模型,也可以选择在云端服务器上进行部署。
图像识别模块:负责接收前端传来的图像数据,调用YOLO算法模型进行图像识别,然后输出检测结果。
结果展示界面:将图像识别的结果展示给用户,可能包括标记出遮挡区域的图像、遮挡程度的评估结果等信息。
反馈与处理:根据图像识别的结果,系统可以进行相应的反馈与处理,例如发出警报、记录遮挡事件、通知相关人员等。
数据存储与管理:系统可能需要对检测到的遮挡数据进行存储和管理,包括原始图像数据、检测结果、历史记录等。
性能优化:为了提高系统的性能和响应速度,可以进行一些性能优化工作,如模型压缩、加速计算、并行处理等。
安全性保障:考虑到道路交通信号灯数据的敏感性,系统需要确保数据传输和存储的安全性,采取相应的安全措施和加密技术。
综合以上组件,基于YOLO算法的道路交通信号灯系统的系统平台架构应具备实时性、准确性、可靠性和安全性等特点,以满足不同场景下的道路交通信号灯图像识别需求。
3.3 YOLO算法程序设计
对于道路交通信号灯识别中的联合交叉点分析(Joint Cross Point Analysis),通常是指在多个不同特征空间或模型之间进行联合分析,以提高道路交通信号灯识别系统的准确性和鲁棒性。这种方法可以结合多个模型的预测结果,通过交叉验证和融合来实现更可靠的道路交通信号灯识别。
表3-1 联合交叉点分析代码
class JointCrossPointAnalysis: def __init__(self, model1, model2): self.model1 = model1 self.model2 = model2 def perform_joint_analysis(self, image): # 使用第一个模型进行道路交通信号灯检测和特征提取 roads_model1 = self.model1.detect_roads(image) features_model1 = self.model1.extract_features(image, roads_model1) # 使用第二个模型进行道路交通信号灯检测和特征提取 roads_model2 = self.model2.detect_roads(image) features_model2 = self.model2.extract_features(image, roads_model2) # 对两个模型提取的特征进行交叉分析 joint_results = [] for road1, feature1 in zip(roads_model1, features_model1): for road2, feature2 in zip(roads_model2, features_model2): if self.is_same_person(feature1, feature2): joint_results.append((road1, road2)) return joint_results def is_same_person(self, feature1, feature2): # 实现特征之间的比较逻辑,判断是否属于同一个人 # 这里可以使用一些距离度量方法,如欧氏距离、余弦相似度等 return True # 这里仅作示例,实际应用中需要根据具体特征和模型进行定义 |
将数据处理成yolo格式,并划分train、val,如图3-3所示。
图3-3 YOLO算法程序结构
本文中如需分析目前道路交通信号灯数据集网站上的道路交通信号灯情况,首先需要定义一个模型任务中的核心逻辑,需要在代码中对每条道路交通信号灯数据的特征字段过滤,下面为分析任务的主要逻辑代码。
表3-2 主要模型类
import cv2 import numpy as np class roadMaskDetectionModel: def __init__(self, model_path, confidence_threshold=0.5): self.net = cv2.dnn.readNetFromDarknet(model_path) self.confidence_threshold = confidence_threshold def detect_road_mask(self, image): # 将图像转换为blob格式 blob = cv2.dnn.blobFromImage(image, 1/255.0, (416, 416), swapRB=True, crop=False) # 设置网络的输入 self.net.setInput(blob) # 前向传播计算 layer_names = self.net.getLayerNames() output_layers = [layer_names[i[0] - 1] for i in self.net.getUnconnectedOutLayers()] outputs = self.net.forward(output_layers) height, width = image.shape[:2] boxes = [] confidences = [] # 解析输出并筛选出置信度高于阈值的边界框 for output in outputs: for detection in output: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if class_id == 0 and confidence > self.confidence_threshold: center_x = int(detection[0] * width) center_y = int(detection[1] * height) w = int(detection[2] * width) h = int(detection[3] * height) x = int(center_x - w / 2) y = int(center_y - h / 2) boxes.append([x, y, w, h]) confidences.append(float(confidence)) # 对边界框进行非极大值抑制 indices = cv2.dnn.NMSBoxes(boxes, confidences, self.confidence_threshold, 0.4) # 获取结果 results = [] for i in indices: i = i[0] x, y, w, h = boxes[i] confidence = confidences[i] results.append({ 'box': (x, y, w, h), 'confidence': confidence }) return results |
为了验证YOLO的识别效果的好坏,本文另外建立了基于卷积神经网络的道路交通信号灯模型,并对识别结果进行了对比。卷积神经网络(Convolutional Neural Networks,YOLO)是深度学习应用于分类识别和回归任务的经典模型[53]。如图5-9所示,是本文设计的基于YOLO网络的道路交通信号灯模型,该模型由两层卷积层,两层池化层和三层全连接层和一个输出层组成。
图3-4 模型网络结构图
class roadMaskDetectionEvaluation: def __init__(self, ground_truth_labels): self.ground_truth_labels = ground_truth_labels def evaluate_results(self, predicted_results): num_samples = len(self.ground_truth_labels) true_positives = 0 false_positives = 0 false_negatives = 0 for i in range(num_samples): if self.ground_truth_labels[i] == 1 and predicted_results[i] == 1: true_positives += 1 elif self.ground_truth_labels[i] == 0 and predicted_results[i] == 1: false_positives += 1 elif self.ground_truth_labels[i] == 1 and predicted_results[i] == 0: false_negatives += 1 precision = true_positives / (true_positives + false_positives) recall = true_positives / (true_positives + false_negatives) accuracy = (true_positives + num_samples - true_positives - false_negatives) / num_samples return precision, recall, accuracy |
上述代码中,roadMaskDetectionEvaluation类接受一个包含真实标签(ground truth labels)的列表作为初始化参数。然后,evaluate_results方法接受一个预测结果列表,并计算出准确率(precision)、召回率(recall)和精度(accuracy)。
在评估过程中,我们将真实标签和预测结果进行比较,统计出真正例(true positives)、假正例(false positives)和假负例(false negatives)的数量。然后,利用这些统计数据计算出准确率、召回率和精度。
第四章 系统的实现
基于YOLO的道路交通信号灯识别分析平台的基本业务功能是采用Python实现的, 在本文的第四章将详细介绍后台系统的实现部分,包括详细阐述了系统功能模块的具体实现,并展示说明了部分模块的功能界面。
4.1 开发环境与配置
本系统设计基于C/S架构,其中服务器包括应用服务器和数据库服务器。这种架构模式,使用户只需要在有网络的地方即可通过浏览器访问,而不需要再安装客户端软件,交互性更强。基于YOLO的道路交通信号灯识别分析平台使用Pycharm集成开发工具。本系统的主要开发环境以及开发工具如表4-1所示。
表4-1 系统开发环境和工具
项目 | 系统环境及版本 |
硬件环境 | Windows 64 位操作系统 |
Python | Python2.6 |
数据库 | MySql |
开发工具 | Pycharm |
4.2 数据库的设计
数据库设计是系统设计中特别重要的一部分。数据库的好坏决定着整个系统的好坏,并且,在之后对数据库的系统维护、更新等功能中,数据库的设计对整个程序有着很大的影响。
根据功能模块的划分结果可知,本系统的用户由于使用账号和密码进行登录,因此在本系统中需要分别进行数据记录。首先根据如下6个数据实体:用户、道路交通信号灯识别等数据库表。
用户的属性包括用户编号、用户名、密码和性别、注册账号的时间。用户实体属性图如图4-1所示:
图4-1 用户实体属性图
根据以上分析,各个实体之间有一定的关系,使实体与实体可以联系起来,建立成整个系统的逻辑结构,本系统中,普通用户通过对道路交通信号灯识别的管理,使道路交通信号灯识别与用户实体存在对应关系。
4.3 系统功能模块实现
4.3.1道路交通信号识别系统首页介绍
道路交通信号灯识别分析系统的用户主界面如下图所4-2所示:
图4-2系统主界面
在首页中,位于上方的横栏是对本系统的基本信息的描述和欢迎登录效果,另外登录用户的用户名也会显示在首页中,可直接表明用户己成功登录。左侧则是本系统的导航菜单,可折叠展示,较为方便,右方则为欢迎页效果。
4.3.2道路交通信号灯图像识别
评估识别系统在图像中正确识别交通信号灯的能力。准确率可以通过计算系统在图像中正确识别的交通信号灯数量与总检测的信号灯数量之比来衡量。对于正确识别的信号灯,评估系统对红灯、绿灯和黄灯的分类精度。这可以通过计算系统在每个类别上的正确分类数量与该类别的总数量之比来评估。评估系统在不同光照条件下的表现。光照条件对信号灯的颜色和亮度有重要影响,系统应该具备一定的适应性,能够在各种光照条件下准确识别信号灯。根据识别结果分析,可以发现系统的不足之处,并提出改进的建议。这可能涉及到算法优化、数据集扩充、模型调整等方面的改进。
综合上述方面的分析,可以评估交通信号灯图像识别系统的性能,并提出改进方案,从而提高系统的准确性、鲁棒性和适应性。
道路交通信号灯识别分析系统的图像识别界面如下图所4-3所示:
图4-3 图像识别界面
4.3.3道路交通信号灯视频识别
首先需要评估识别系统的准确率,即系统正确识别交通信号灯的能力。准确率可以通过计算系统在视频中正确识别的交通信号灯数量与总检测的信号灯数量之比来衡量。除了准确率外,还需要考虑系统的误检率,即错误地将非交通信号灯识别为信号灯的情况。误检率可以通过计算系统错误检测的非信号灯数量与总检测的非信号灯数量之比来评估。漏检率表示系统未能正确识别的交通信号灯的比例。这可以通过计算系统未能识别的交通信号灯数量与总实际存在的交通信号灯数量之比来评估。除了准确性外,还需要评估识别系统的响应速度,即系统在处理视频时的速度。较快的响应速度对于实时交通监控和驾驶辅助系统至关重要。
识别系统的稳定性指的是在不同场景、不同光照条件下系统的表现稳定性。稳定的系统应该能够在各种情况下都能够准确识别交通信号灯。根据识别结果分析,可以发现系统的不足之处,并提出改进的建议。这可能涉及到算法优化、数据集扩充、模型调整等方面的改进。
综合上述方面的分析,可以评估交通信号灯视频识别系统的性能,并提出改进方案,从而提高系统的准确性、稳定性和实时性。道路交通信号灯识别界面如图4-5所示。
图4-5 视频识别界面
道路交通信号灯识别分析开发的难点并不在于图表类型的多样化,而在于如何能在简单的一页之内让用户读懂道路交通信号灯数据之间的层次与关联,卷积神经网络在道路交通信号灯模型有有更高的选择性,同时模型也有更高的鲁棒性,相对于需要大量样本、大量调参的其他神经网络,使用YOLO网络训练迭代次数较少、误差率更低,在基道路交通信号灯文本分类中具有一定的优势。
4.4 本章小结
本章主要分析了基于YOLO的道路交通信号灯识别分析系统开发过程中使用到的技术和具体的实现步骤,这其中主要介绍了基于Python的道路交通信号灯识别分析系统的搭建环境和开发步骤,包括程序中的一些数据库配置等。
第五章 总结与展望
5.1 总结
系统涉及的领域,包括数据库设计、界面设计等,是一个具有实际应用意义的管理系统。根据本毕业设计要求,经过四个多月的设计与开发,监控数据道路交通信号灯系统基本开发完毕。其功能基本符合用户的需求。
为保证有足够的技术能力去开发本系统,首先本人对开发过程中所用到的工
具和技术进行了认真地学习和研究,详细地钻研了Flask, CSS, HTML等前后端开发技术,同时还研究YOLO算法等。
随着人工智能技术的快速发展,深度学习在图像处理领域的应用越来越广泛。其中,道路交通信号灯检测作为智能交通系统的重要组成部分,对于提高道路安全、辅助驾驶决策具有重要意义。本文基于深度学习技术,设计并实现了一个高效的道路交通信号灯检测系统。
该系统以YOLO算法为基础,结合深度学习技术,实现了对道路交通信号灯的快速、准确检测。系统通过训练大量道路交通信号灯图像数据集,学习并提取了标志的关键特征,进而实现对各类交通信号灯的有效识别。在算法实现上,系统采用了卷积神经网络(CNN)作为特征提取器,通过多尺度特征融合和锚框调整等技术手段,提高了检测精度和速度。
在系统架构上,本文设计的道路交通信号灯检测系统主要由数据预处理、模型训练和检测识别三个模块组成。数据预处理模块负责对原始图像进行预处理操作,如去噪、归一化等,以提高图像质量;模型训练模块则利用预处理后的图像数据集对YOLO模型进行训练,得到适用于道路交通信号灯检测的模型;检测识别模块则利用训练好的模型对实时采集的道路图像进行标志检测与识别,并将结果以可视化方式展示给用户。
5.2 展望
该系统还具备可扩展性和灵活性,可以方便地集成到现有的智能交通系统中,为道路安全监控和驾驶辅助提供有力支持。同时,通过不断优化算法模型和升级硬件设备,系统有望在未来实现更高的检测精度和更快的处理速度,为智能交通的进一步发展贡献力量。
参考文献
[1] 熊旋锦,潘小琴,唐楷,等.基于深度学习的交通信号灯识别智能车的设计与实现[J].自动化与仪表, 2018, 33(6):5.DOI:CNKI:SUN:ZDHY.0.2018-06-024.
[2] 王宽.基于深度学习的交通信号灯检测算法研究[J].[2024-03-08].
[3] 朱彤.基于深度学习的交通信号灯检测与识别方法研究[D].天津大学[2024-03-08].
[4] 尉天成陈小锋殷元亮.基于多尺度卷积神经网络的道路交通信号灯识别方法研究[J].西北工业大学学报, 2021, 39(4):891-900.
[5] 童英.道路前方交通信号灯识别算法研究[D].安徽工程大学[2024-03-08].
[6] 田润,魏志刚,刘明铮.基于深度学习的交通信号灯识别方法研究[J].数字技术与应用, 2019, 37(2):2.DOI:10.19695/j.cnki.cn12-1369.2019.02.47.
[7] 陶然.基于卷积神经网络的智能路标识别研究[J].中国科技期刊数据库 工业A, 2022(6):5.
[8] 孙涛.缩微智能车交通信号灯检测与识别方法研究[J]. 2013.
[9] 武林秀,李厚杰,贺建军,等.基于深度学习的交通信号灯检测方法研究[J].大连民族学院学报, 2018(005):020.
[10] 余进程.车载辅助系统中禁令交通信号灯的识别研究[D].广东工业大学[2024-03-08].
[11] 余贵珍,钟晓明,吴新开,等.一种基于深度学习的交通信号灯自动识别与标注方法:CN201610709275.1[P].CN106372577A[2024-03-08].
[12] 徐仙伟,曹霁.基于深度学习的交通信号灯识别算法[J].计算机时代, 2019(6):4.DOI:CNKI:SUN:JSJS.0.2019-06-019.
[13] 李文举,那馨元,苏攀.一种基于深度学习和极限学习机的交通信号灯识别方法:CN202010321962.2[P].CN111461060A[2024-03-08].
[14] 袁金丽.基于深度学习的交通信号灯识别算法研究[J].现代电子技术(22)[2024-03-08].
[15] 刘军,李汉冰,后士浩.一种基于深度学习的实时交通信号灯检测方法:CN201910552184.5[P].CN110378239A[2024-03-08].
[16] 余贵珍,钟晓明,吴新开,等.一种基于深度学习的公路交通信号灯自动识别与管理系统[2024-03-08].
致谢
在完成这篇关于基于yolo的交通信号灯识别系统的设计与实现的论文之际,我衷心感谢所有给予我帮助、支持和鼓励的人。
我要向我的导师表示最诚挚的感谢。在整个研究过程中,导师的悉心指导和无私帮助让我受益匪浅。导师严谨的科研态度、深厚的学术造诣和敏锐的洞察力,不仅为我的研究提供了宝贵的建议,也为我未来的学术生涯树立了榜样。
我要感谢我的家人和朋友。他们的关爱和支持,让我在面对困难和挫折时始终保持着信心和动力。他们是我最坚实的后盾,也是我不断前进的源泉。
在此,我再次向所有给予我帮助、支持和鼓励的人表示衷心的感谢。我将继续努力,不负众望,为学术研究和社会发展贡献自己的力量。