构建AI大模型应用技术栈有哪些?

摘要:随着人工智能技术的飞速发展,AI大模型已经成为推动各行各业技术革新的关键力量。本文将深入探讨AI大模型的核心技术栈的构建,以及不同技术组件的关键作用。

  • AI大模型应用的核心技术栈
  • 各组件的关键作用
  • 基于大模型的应用和普通应用的区别

图片

01

AI大模型应用的核心技术栈

为了开发一个AI大模型的应用,我们需要哪些必要的组件来完成相关开发了,下图是AI大模型的应用的核心技术栈。

图片

核心技术栈中主要包含的内容是大模型管理(通用大模型、领域私有化的微调大模型、工具型大模型)。微调的数据仓库,以及后期反馈的数据存储到微调数据仓库。提示词工程管理常见的提示词内容,湖仓一体为存储原始数据和向量数据的地方。而开发的智能体的应用则包含记忆功能,工具库,text-to-sql,AI agent 和RAG.后面详细介绍每一部分在整体应用中的作用。如果从使用的业务流程上来介绍一个完整的智能应用,如下图所示:

图片

1、将文档数据,图片数据的元数据信息,文章内容总结、文章段落等向量化

2、将以上信息全部存储到向量数据库中,例如ES中

3、用户发起提问

4、智能Agent调用大模型

5、大模型语以理解后,通过调用合适的提示词工程形成一个完善的提示词,并进行参数格式化。

6、如果有专业领域知识内容,则进入到向量数据库中进行匹配。匹配内容返回到agent中。

7、AIagent 将提示词工程拆分成多个子任务,可能子任务需要调用私有模型或者插件

8、插件即为集成的各种工具API,便于完成整体的任务。

9、所有任务完成之后返回到agent中,agent将结果返回给用户。

这里需要说明一下为什么大模型有三种情况:

  • 通用大语言模型(参数> 100B)

  • 领域大语言模型(参数10~70B)

  • 工具类模型(参数<10B)

在人工智能领域,"大模型"通常指的是具有大量参数的复杂模型,它们能够处理和理解大量数据,并在特定任务上表现出色。根据它们的应用范围和功能,大模型可以被分为以下几种类型:

  • 通用大模型(General-Purpose Large Models):

    • 这些模型设计得足够灵活,能够处理多种类型的任务,不局限于特定的领域或应用。例如,一个通用的语言模型可以用于文本生成、翻译、摘要、问答等多种自然语言处理任务。
  • 领域大模型(Domain-Specific Large Models):

    • 领域大模型是针对特定领域或行业定制的模型,它们在特定类型的数据和任务上进行了优化。例如,医疗领域的大模型可能专门用于理解医学文献、辅助诊断或患者记录分析。
  • 工具大模型(Tool-Oriented Large Models):

    • 工具大模型专注于提供特定的功能或服务,它们通常被设计为与其他系统或应用程序集成,以增强或自动化特定的工作流程。例如,一个图像识别工具大模型可能被集成到电子商务平台中,用于自动分类商品图片。
  • 每种类型的大模型都有其特定的优势和应用场景:

  • 通用大模型的优势在于它们的灵活性和广泛的适用性,但可能需要针对特定任务进行微调以获得最佳性能。

  • 领域大模型的优势在于它们在特定领域的专业性和高效性,但可能不如通用模型那样灵活。

  • 工具大模型的优势在于它们能够提供高度专业化的服务,并且易于集成到现有的系统和工作流程中。

选择哪种类型的大模型取决于具体的应用需求、可用的数据、预期的性能和资源限制。在实际应用中,这些模型也可以相互结合,以实现更全面和高效的解决方案。例如,一个领域特定的工具大模型可能使用通用大模型作为其基础,然后针对特定任务进行定制和优化。

图片

02

关键步骤的关键作用

提示词工程(Prompt Engineering)是一种在人工智能领域,特别是在自然语言处理(NLP)中使用的技术,它涉及到设计和优化用于激发或引导AI模型输出特定类型回答的提示或问题。在基于Transformer的模型如GPT(生成式预训练转换器)中,提示词工程尤为重要,因为这些模型通常通过大量的文本数据进行预训练,能够根据输入的提示生成文本。

图片

提示词工程(Prompt Engineering)是一种在人工智能领域,特别是在自然语言处理(NLP)中使用的技术,它涉及到设计和优化用于激发或引导AI模型输出特定类型回答的提示或问题。在基于Transformer的模型如GPT(生成式预训练转换器)中,提示词工程尤为重要,因为这些模型通常通过大量的文本数据进行预训练,能够根据输入的提示生成文本。

提示词工程的作用

  1. 引导回答:通过精确的提示词,可以引导AI模型提供更加准确和相关的回答。
### AI大模型构建与部署的技术栈 #### 构建AI大模型所需工具和技术框架 在构建AI大模型的过程中,多种技术和工具被广泛应用以实现高效开发和训练。这些技术涵盖了数据预处理、模型架构设计以及分布式计算等方面。 对于大规模的数据集管理与预处理工作,Apache Spark 和 Dask 是两个强大的库,它们能够提供高效的并行化操作来加速数据清洗流程[^1]。而在定义神经网络结构方面,PyTorch 和 TensorFlow 成为了主流的选择;两者都提供了灵活易用的API接口让开发者可以轻松创建复杂的层叠式卷积或循环单元,并且内置了大量的优化器和支持GPU加速的功能[^2]。 当涉及到更高级别的抽象层次时,Hugging Face 的 Transformers 库因其丰富的预训练模型资源而备受青睐。它不仅简化了迁移学习的过程,还允许研究人员快速实验不同的超参数配置而不必每次都重新开始训练整个过程。 #### 部署AI大模型所需的基础设施和服务平台 完成模型训练之后,如何有效地将其集成到实际应用场景中成为了一个重要课题。针对这一需求,云服务平台扮演着不可或缺的角色。AWS SageMaker, Google Cloud Vertex AI 及 Microsoft Azure Machine Learning 提供了一站式的解决方案,从版本控制、自动调参直到在线推理服务都能得到妥善安排[^3]。 特别值得注意的是,在某些特定场景下(比如边缘设备上的实时预测),轻量化推理引擎如TensorFlow Lite 或 ONNX Runtime 显示出了独特的优势。这类软件包经过专门优化可以在低功耗硬件环境中保持高性能表现的同时减少内存占用量。 此外,随着量子计算机的发展及其潜在对传统加密方法构成威胁的可能性增加,研究者们也开始探索利用量子特性改进现有算法效率的新途径。不过目前这仍然是一个处于早期发展阶段的研究方向。 ```python import torch from transformers import BertTokenizer, BertForSequenceClassification tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased') inputs = tokenizer("Hello world!", return_tensors="pt") outputs = model(**inputs) print(outputs.logits) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值