Flink Table API 与 SQL 编程整理

public static void main(String[] args) throws Exception {
            //获取执行环境:CTRL + ALT + V
    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    StreamTableEnvironment tEnv = TableEnvironment.getTableEnvironment(env);
            //指定一个路径
    String path = JavaStreamWordCount.class.getClassLoader().getResource("words.txt").getPath();
            //指定文件格式和分隔符,对应的Schema(架构)这里只有一列,类型是String
    tEnv.connect(new FileSystem().path(path))
        .withFormat(new OldCsv().field("word", Types.STRING).lineDelimiter("\n"))
        .withSchema(new Schema().field("word", Types.STRING))
        .inAppendMode()
        .registerTableSource("fileSource");//将source注册到env中
            //通过 scan 拿到table,然后执行table的操作。
    Table result = tEnv.scan("fileSource")
        .groupBy("word")
        .select("word, count(1) as count");
            //将table输出
    tEnv.toRetractStream(result, Row.class).print();
            //执行
    env.execute();
}

}


### 怎么定义一个 Table


`Table myTable = tableEnvironment.scan("myTable")` 都是从`Environment`中`scan`出来的。而这个`myTable` 又是我们注册进去的。问题就是有哪些方式可以注册`Table`。  
 **【1】Table descriptor:** 类似于上述的`WordCount`,指定一个文件系统`fs`,也可以是`kafka`等,还需要一些格式和`Schema`等。



tEnv.connect(new FileSystem().path(path))
.withFormat(new OldCsv().field(“word”, Types.STRING).lineDelimiter(“\n”))
.withSchema(new Schema().field(“word”, Types.STRING))
.inAppendMode()
.registerTableSource(“fileSource”);//将source注册到env中


**【2】自定义一个 Table source:** 然后把自己的`Table source`注册进去。



TableSource csvSource = new CsvTableSource(path,new String[]{“word”},new TypeInformation[]{Types.STRING});
tEnv.registerTableSource(“sourceTable2”, csvSource);


**【3】注册一个 DataStream:** 例如下面一个`String`类型的`DataStream`,命名为`myTable3`对应的`schema`只有一列叫`word`。



DataStream stream = …
// register the DataStream as table " myTable3" with
// fields “word”
tableEnv.registerDataStream(“myTable3”, stream, “word”);


### 动态表


如果流中的数据类型是`case class`可以直接根据`case class`的结构生成`table`



tableEnv.fromDataStream(ecommerceLogDstream)


或者根据字段顺序单独命名:用单引放到字段前面来标识字段名。



tableEnv.fromDataStream(ecommerceLogDstream,'mid,'uid …)


最后的动态表可以转换为流进行输出,如果不是简单的插入就使用`toRetractStream`



table.toAppendStream[(String,String)]


### 如何输出一个table


当我们获取到一个结构表的时候(`table`类型)执行`insertInto`目标表中:`resultTable.insertInto("TargetTable");`


**【1】Table descriptor:** 类似于注入,最终使用Sink进行输出,例如如下输出到`targetTable`中,主要是最后一段的区别。



tEnv
.connect(new FileSystem().path(path)).withFormat(new OldCsv().field(“word”, Types.STRING)
.lineDelimiter(“\n”)).withSchema(new Schema()
.field(“word”, Types.STRING))
.registerTableSink(“targetTable”);


**【2】自定义一个 Table sink:** 输出到自己的 sinkTable2注册进去。



TableSink csvSink = new CsvTableSink(path,new String[]{“word”},new TypeInformation[]{Types.STRING});
tEnv.registerTableSink(“sinkTable2”, csvSink);


**【3】输出一个 DataStream:** 例如下面产生一个`RetractStream`,对应要给`Tuple2`的联系。`Boolean`这行记录时`add`还是`delete`。如果使用了`groupby`,`table` 转化为流的时候只能使用`toRetractStream`。得到的第一个`boolean`型字段标识 `true`就是最新的数据(`Insert`),`false`表示过期老数据(`Delete`)。如果使用的`api`包括时间窗口,那么窗口的字段必须出现在`groupBy`中。



// emit the result table to a DataStream
DataStream<Tuple2<Boolean, Row>> stream = tableEnv.toRetractStream(resultTable, Row.class)
stream.filter(_._1).print()


**案例代码:**



package com.zzx.flink

import java.util.Properties

import com.alibaba.fastjson.JSON
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011
import org.apache.flink.table.api.java.Tumble
import org.apache.flink.table.api.{StreamTableEnvironment, Table, TableEnvironment}

object FlinkTableAndSql {
def main(args: Array[String]): Unit = {
//执行环境
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
//设置 时间特定为 EventTime
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

//读取数据 MyKafkaConsumer 为自定义的 kafka 工具类,并传入 topic
val dstream: DataStream[String] = env.addSource(MyKafkaConsumer.getConsumer("FLINKTABLE&SQL"))

//将字符串转换为对象
val ecommerceLogDstream:DataStream[SensorReding] = dstream.map{
 /\* 引入如下依赖
com.alibaba fastjson 1.2.36 \*/ //将 String 转换为 SensorReding jsonString => JSON.parseObject(jsonString,classOf[SensorReding]) }
//告知 watermark 和 evetTime如何提取
val ecommerceLogWithEventTimeDStream: DataStream[SensorReding] =ecommerceLogDstream.assignTimestampsAndWatermarks(
      new BoundedOutOfOrdernessTimestampExtractor[SensorReding](Time.seconds(0)) {
  override def extractTimestamp(t: SensorReding): Long = {
    t.timestamp
  }
})
//设置并行度
ecommerceLogDstream.setParallelism(1)

//创建 Table 执行环境
val tableEnv: StreamTableEnvironment = TableEnvironment.getTableEnvironment(env)
var ecommerceTable: Table = tableEnv.fromTableSource(ecommerceLogWithEventTimeDStream ,'mid,'uid,'ch,'ts.rowtime)

//通过 table api进行操作
//每10秒统计一次各个渠道的个数 table api解决
//groupby window=滚动式窗口 用 eventtime 来确定开窗时间
val resultTalbe: Table = ecommerceTable.window(Tumble over 10000.millis on 'ts as 'tt).groupBy('ch,'tt).select('ch,'ch.count)
var ecommerceTalbe: String = "xxx"
//通过 SQL 执行
val resultSQLTable: Table = tableEnv.sqlQuery("select ch,count(ch) from "+ ecommerceTalbe +"group by ch,Tumble(ts,interval '10' SECOND")

//把 Table 转化成流输出
//val appstoreDStream: DataStream[(String,String,Long)] = appstoreTable.toAppendStream[(String,String,Long)]
val resultDStream: DataStream[(Boolean,(String,Long))] = resultSQLTable.toRetractStream[(String,Long)]
//过滤
resultDStream.filter(_._1)
env.execute()

}
}
object MyKafkaConsumer {
def getConsumer(sourceTopic: String): FlinkKafkaConsumer011[String] ={
val bootstrapServers = “hadoop1:9092”
// kafkaConsumer 需要的配置参数
val props = new Properties
// 定义kakfa 服务的地址,不需要将所有broker指定上
props.put(“bootstrap.servers”, bootstrapServers)
// 制定consumer group
props.put(“group.id”, “test”)

// 是否自动确认offset
props.put(“enable.auto.commit”, “true”)
// 自动确认offset的时间间隔
props.put(“auto.commit.interval.ms”, “1000”)
// key的序列化类
props.put(“key.deserializer”, “org.apache.kafka.common.serialization.StringDeserializer”)
// value的序列化类
props.put(“value.deserializer”, “org.apache.kafka.common.serialization.StringDeserializer”)
//从kafka读取数据,需要实现 SourceFunction 他给我们提供了一个
val consumer = new FlinkKafkaConsumer011[String](sourceTopic, new SimpleStringSchema, props)
consumer
}
}


### 关于时间窗口


【1】用到时间窗口,必须提前声明时间字段,如果是`processTime`直接在创建动态表时进行追加就可以。如下的`ps.proctime`。



val ecommerceLogTable: Table = tableEnv
.fromDataStream( ecommerceLogWithEtDstream,
mid,uid,appid,area,os,ps.proctime )


【2】如果是`EventTime`要在创建动态表时声明。如下的`ts.rowtime`。



val ecommerceLogTable: Table = tableEnv
.fromDataStream( ecommerceLogWithEtDstream,
'mid,'uid,'appid,'area,'os,'ts.rowtime)


【3】**滚动窗口**可以使用`Tumble over 10000.millis on`来表示



val table: Table = ecommerceLogTable.filter(“ch = ‘appstore’”)
.window(Tumble over 10000.millis on 'ts as 'tt)
.groupBy('ch,'tt)
.select(“ch,ch.count”)


### 如何查询一个 table


为了会有`GroupedTable`等,为了增加限制,写出正确的`API`。  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/85120bcd08ab4e76a079cf771aa4e0a4.png)


### Table API 操作分类


1、与`sql`对齐的操作,`select`、`as`、`filter`等;  
 2、提升`Table API`易用性的操作;  
 ——**`Columns Operation`易用性:** 假设有一张`100`列的表,我们需要去掉一列,需要怎么操作?第三个`API`可以帮你完成。我们先获取表中的所有`Column`,然后通过`dropColumn`去掉不需要的列即可。主要是一个`Table`上的算子。




| Operators | Examples |
| --- | --- |
| AddColumns | Table orders = tableEnv.scan(“Orders”); Table result = orders.addColumns(“concat(c,‘sunny’)as desc”); 添加新的列,要求是列名不能重复。 |
| addOrReplaceColumns | Table orders = tableEnv.scan(“Orders”); Table result = order.addOrReplaceColumns(“concat(c,‘sunny’) as desc”);添加列,如果存在则覆盖 |
| DropColumns | Table orders = tableEnv.scan(“Orders”); Table result = orders.dropColumns(“b c”); |
| RenameColumns | Table orders = tableEnv.scan(“Orders”); Table result = orders.RenameColumns("b as b2,c as c2);列重命名 |


——**`Columns Function`易用性:** 假设有一张表,我么需要获取第`20-80`列,该如何获取。类似一个函数,可以用在列选择的任何地方,例如:`Table.select(withColumns(a,1 to 10))`、`GroupBy`等等。




| 语法 | 描述 |
| --- | --- |
| withColumns(…) | 选择你指定的列 |
| withoutColumns(…) | 反选你指定的列 |


![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/d192653a4b664e4fbf363b7f886c76a1.png)  
 **列的操作语法(建议):** 如下,它们都是上层包含下层的关系。



columnOperation:
withColumns(columnExprs) / withoutColumns(columnExprs) #可以接收多个参数 columnExpr
columnExprs:
columnExpr [, columnExpr]* #可以分为如下三种情况
columnExpr:
columnRef | columnIndex to columnIndex | columnName to columnName #1 cloumn引用 2下标范围操作 3名字的范围操作
columnRef:
columnName(The field name that exists in the table) | columnIndex(a positive integer starting at 1)

Example: withColumns(a, b, 2 to 10, w to z)


`Row based operation`/`Map operation`易用性:



//方法签名: 接收一个 scalarFunction 参数,返回一个 Table
def map(scalarFunction: Expression): Table

class MyMap extends ScalarFunction {
var param : String = “”

//eval 方法接收一些输入
def eval([user defined inputs]): Row = {
    val result = new Row(3)
    // Business processing based on data and parameters
    // 根据数据和参数进行业务处理,返回最终结果
    result
}
//指定结果对应的类型,例如这里 Row的类型,Row有三列
override def getResultType(signature: Array[Class[_]]):
TypeInformation[_] = {
    Types.ROW(Types.STRING, Types.INT, Types.LONG)
}

}

//使用 fun('e) 得到一个 Row 并定义名称 abc 然后获取 ac列
val res = tab
.map(fun('e)).as('a, 'b, 'c)
.select('a, 'c)

//好处:当你的列很多的时候,并且每一类都需要返回一个结果的时候
table.select(udf1(), udf2(), udf3()….)
VS
table.map(udf())


`Map`是输入一条输出一条  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/dcb9b90b2e4d4022ab32d8883c7cf482.png)  
 **`FlatMap operation`易用性:**



//方法签名:出入一个tableFunction
def flatMap(tableFunction: Expression): Table
#tableFunction 实现的列子,返回一个 User类型,是一个 POJOs类型,Flink能够自动识别类型。
case class User(name: String, age: Int)
class MyFlatMap extends TableFunction[User] {
def eval([user defined inputs]): Unit = {
for(…){
collect(User(name, age))
}
}
}

//使用
val res = tab
.flatMap(fun('e,'f)).as('name, 'age)
.select('name, 'age)
Benefit

//好处
table.joinLateral(udtf) VS table.flatMap(udtf())


`FlatMap`是输入一行输出多行  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/b2aea94154fa4169b09e4ade5c2062d2.png)  
 **`FlatAggregate operation`功能性:**



#方法签名:输入 tableAggregateFunction 与 AggregateFunction 很相似
def flatAggregate(tableAggregateFunction: Expression): FlatAggregateTable
class FlatAggregateTable(table: Table, groupKey: Seq[Expression], tableAggFun: Expression)
class TopNAcc {
var data: MapView[JInt, JLong] = _ // (rank -> value)

}
class TopN(n: Int) extends TableAggregateFunction[(Int, Long), TopNAccum] {
def accumulate(acc: TopNAcc, [user defined inputs]) {

}
#可以那多 column,进行多个输出
def emitValue(acc: TopNAcc, out: Collector[(Int, Long)]): Unit = {

}
…retract/merge
}

#用法
val res = tab
.groupBy(‘a)
.flatAggregate(
flatAggFunc(‘e,’f) as (‘a, ‘b, ‘c))
.select(‘a, ‘c)

#好处
新增了一种agg,输出多行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值